
Sketchbox[™] by Slipstream

Thursday, August 15, 2024

My Project

PROJECT DESIGN SCHEDULES BASELINE

Teaching Presenters Joe Phillips - phillipsj@esschools.k12.wi.us HS and MS Science Teacher, Eleva-Strum

James Reichling - jpreichling@madison.k12.wi.us Physics & math teacher, Madison Metro School District Instructor, CREATE center

Samara Hamzé - <u>samara.hamze@uwsp.edu</u> Program Manager at KEEP (Wisconsin's K-12 Energy Education Program)

Slipstream Staff

Dave Vigliotta Senior Director of Partnership Development

Drew Morrison Senior Energy Engineer

Emily Golen Energy Engineer II

Peggy Heisch Project Manager

Participant Introductions

Your name

What level and classes you teach or other industry connection

How do you expect you will use sketchbox?

Recording in Progress!

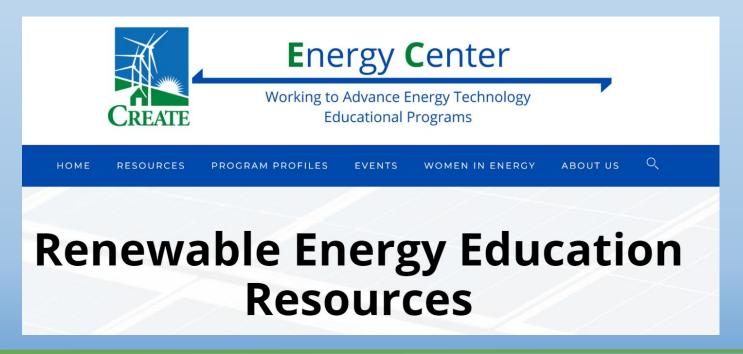
For later training purposes today's sessions are being recorded

Thank you

PARTNERS

Wisconsin K-12 Energy Education Program (KEEP) College of Natural Resources **University of Wisconsin-Stevens Point**

slipstream


Accelerating climate solutions. For everyone.

We deliver research, technical assistance, financing, education and training, and programs for stakeholders.

www.slipstreaminc.org

CREATE

Center for Renewable Energy Advanced Technological Education https://createenergy.org/resources/

Agenda (part 1) 9:00 - 9:15 Introductions and objectives 9:15 - 9:30Overview of Sketchbox 9:30 – 9:40 Curriculum Connections 9:40 – 10:00 Sample Building Model 10:00 - 10:10 Overview of Lessons and Resources BREAK - Resume at 10:25 CDT

Agenda (part 2)

Integration of External Resources 10:25 - 10:35 (e.g. PV Watts, Future Urban Climates, Career Roadmaps) 10:35 - 10:50 **Breakout Groups with Sketchbox** 10:50 - 11:05 Technical Q & A with Slipstream 11:05 - 11:15 **Review of Resources, Brief Evaluation Conclusion of Workshop**

Objectives

Introduce Sketchbox Building Energy Modeling Interface

Motivate the use of energy modeling in the classroom, including career connections

Describe available lesson materials and resources

Demonstrate creation of several building models

Overview: Energy use in buildings

US EIA reports buildings account for 39% in 2021

Example strategies to save energy, reduce cost

- upgrade lighting
- scheduling and set points
- update mechanical systems
- building envelope improvements

Energy modeling helps make decisions about which strategies provide the greatest return on investment

US Dept of Energy (DOE) provides DOE2 Building Energy Use and Cost Analysis Software

DOE provides E-Quest as a user interface

Download and install required, can be hard to learn

Sketchbox by Slipstream as a teaching tool

Online user interface to DOE2

Free to use, no download required

Runs on a student chromebook

Students can change parameters to explore impact on energy utilization and cost. Examples:

Building type (school, commercial, library, fitness center)

Location (City and State)

Window Fraction and Spatial Orientation

Energy Code

Sketchbox navigation through tool tabs

PROJECT DESIGN SCHEDULES

BASELINE MEASURES RESULTS

Pre-loaded sample data for quick-start including: Building types, building size, mechanical systems, weather data and utility rates by location Sketchbox Example

150,000 square foot school building in Chicago

Demonstrate in sketchbox

Sketchbox demo school PROJECT DESIGN SCHEDULES BASELINE MEASURES RESULTS

https://slipstreaminc.org/sketchbox

Welcome to Sketchbox!

Email

Password

START USING SKETCHBOX TODAY

Create an account

Forgot your password?

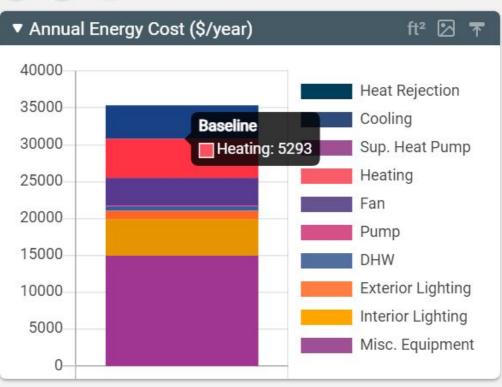
Questions?

Please contact us at tools@slipstreaminc.org

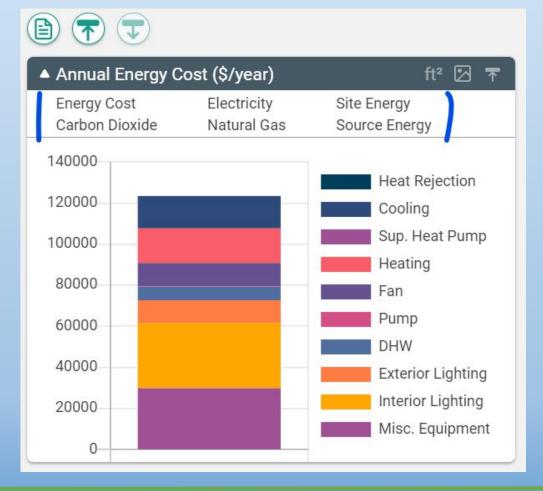
Default Project Settings

PROJECT DESIGN SCHEDULES BASELINE MEASURES RESULTS

General		Financial		Emissions	
Project Name		Rate Category		Energy Sour	ce to Site Ratio
My Project		Commercial	~	Electricity	Natural Gas
Project Environment		Cost of Electricity		2.8	1.05
Basic	\sim	0.09	\$/kWh	CO ₂ Equivale	ence for Electricity
State		Cost of Natural Ga	S	0.371	kg of CO ₂ e/kWh
Illinois	\sim	0.693	\$/therm	CO ₂ Equivale	ence for Natural Gas
Nearest City				5.3	kg of CO ₂ e/therm
Chicago	~				
Energy Code					
IECC 2018	\sim				


Building Type School/University \sim Parent Shell Adjacency None Not Used Aspect Ratio Area ft² 150000 1 Floors Number Height 13 ft 2 Perimeter Zone Depth ft 15 Roof Type Insulation entirely above deck \vee Wall Type Metal framed V Glazing Type **Fixed fenestration** \sim

Window North	-to-Wall Ra <i>South</i>	atio (%) <i>East</i>	West
22	22	22	22
Skylight	Туре		
Plastic	Curb		~
Skylight	to-Roof R	atio	
0			%
Heating	Fuel Type		
Natural	Gas		\sim
Air-Side	System		
Packag	ed VAV wi	th HW Re	heat 🗸
Cooling	System		
Direct E	xpansion		
Heating	System		
Boiler			
Dedicate	ed Outdoo	r Air Syste	em
None		₹¢	\sim


Design Tab Options

PROJECT DESIGN SCHEDULES BASELINE MEASURES RESULTS

Image: A marked mark



Energy Cost by Utilization

Other display options

Monthly breakdown

Annual Summary

Results Table 🖺								
	Peak Cooling (kBTU/h	g Heating		Peak Electric Demand (kW)		Annual Electric Consumption (kWh)		
Baseline	3244.8	2404.7		413.1	1027457			
		Annual Natural Gas Consumption (therm)		E	Annual nergy Cost (\$)	0.50	Annual Water Consumption (gal/yr)	
		34975			1	16709	195	0000

Sketchbox Example - What if...?

Building size reduced by half

Original building had more windows

Original building moved to LA

https://forms.office.com/r/XWvFWevVF0

Lesson 1 - Introduction to Sketchbox - RESULTS

Scenario	Electricity (MWh)	Natural Gas Therms	Total Cost Dollars (\$)
Baseline	1027	34,975	116,709
Half area (75,000 ft ²)	513	18,672	59,074
Double window area	1064	35,163	120,122
Move to LA	1051	10,064	166,944

Lesson 1 - Introduction to Sketchbox - RESULTS

Scenario	Electricity (MWh)	Natural Gas Therms	Total Cost Dollars (\$)
Baseline in Chicago	1027	34,975	116,709
Move to Los Angeles	1051	10,064	166,944

In Chicago electricity has a carbon impact of 0.371 kgCO₂/kWh In California this value is 0.191 kgCO₂/kWh Natural gas is 5.3 kgCO₂/therm

Lesson 1 - Introduction to Sketchbox - RESULTS

Scenario	Electricity (MWh)	Natural Gas Therms	Total Cost Dollars (\$)
Baseline in Chicago	1027	34,975	116,709
Move to Los Angeles	1051	10,064	166,944

Chicago: 566,400 kg-CO₂e Los Angeles: 443,30 kg-CO₂e

Curriculum Connections

Why teach this to students?

<u>Classroom</u>, <u>**Curriculum**</u>, and <u>**Common**</u> **<u>Sense</u> Enhancement**

- Understanding Resources
- Analyzing Costs and Benefits in Life and Business
- Provide Real Examples of Climate Change and Solutions
- Demonstrate Career Opportunities, Specialization, and Advancement Possibilities
 - Building Manager, Energy Engineering, Architecture, HVAC, Energy Analysts, Construction/Contractor, Sustainability Coordinator

Curriculum Connections

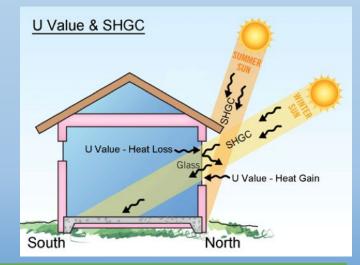
Meeting Standards in Relatable and Useful Ways

Why teach this to students?

- Mathematics: Area, Volume, Percent and Percent Change
- CTE: Insulation Values, Material Costs, Marketing and Managing
- Science:

MS-PS1-4 Matter and its Interactions

Develop a model that predicts and describes changes in particle motion, temperature, and state of a pure substance when thermal energy is added or removed.


MS-ETS1-2 Engineering Design

Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.

Curriculum Connections

Why teach this to students? <u>Expand Knowledge and Possibilities</u>

- SHGC: What is it?
 - Solar Heat Gain Coefficient
 - Solar? Coefficient? Values?
 - Cost of materials?
 - Payback and time?
- The best "bang for the buck"?
 - As compared to LED lighting?

Why teach this to students? Energy DPI Pathway

Job growth in renewable energy

Green buildings career map: https://greenbuildingscareermap.org/

Exploring A Job In The Energy Industry

Exploring A Job In The Energy Industry encourages students to explore a potential, future energy job. Using Career Maps, students research compensation, qualifications, job demands, and advancement opportunities for the job they selected.

Renewable Energy Career Maps

- Solar
- Climate Control
- Bioenergy
- Wind
- Green Buildings

DPI Regional Career maps https://dpi.wi.gov/sites/default/files/imce/pathways-wisconsin/ 2022_11_14_Final_Energy_Career_Pathway_11.14.22.pdf

- Energy Generation & Conservation
- Energy Transmission, Distribution, & Storage

Training levels: H.S. Diploma, Certification or Technical Diploma, Registered Apprenticeship, Associates Degree, Bachelor's Degree and beyond

DPI Regional Career maps

	Energy Career Pathway <name of="" region=""> 2022-2024</name>
	find the job titles that seem most interesting to you to learn more! Save any jobs an Academic and Career Plan (ACP) later on.
Educational Level May also require work experience	Energy Generation & Conservation
High School Diploma, Certification	Solar PV Installer * Electrical & Gas Power Line Helper * O Utility Log Range \$xxx,xxx-x
Certification or Technical Diploma	Distribution Generation Operator Solar/Wind Energy Technician * Building Automation Technician * Energy Auditor Residential HVAC Technician * Range \$xxx,xxx-xxx,xxx
Registered Apprenticeship	Substation Electrician * Apprentice Plant Attendant * Range \$xxx,xxx-xxx,xxx

KEEP's Energy Lessons

ENERGY CONCEPTS

ENERGY EFFICIENCY

RENEWABLE ENERGY

Download FREE Resources

Wisconsin K-12 Energy Education Program (KEEP) College of Natural Resources **University of Wisconsin-Stevens Point**

KEEP Kits

- 9 KEEP Energy Kits
- > 35 total KEEP/LEAF/WCEE Kits
- Free to use throughout WI
- Most kits can be shipped

Wisconsin K-12 Energy Education Program (KEEP) College of Natural Resources **University of Wisconsin - Stevens Point**

			- Alexandre	
STEP 1	STEP 2	STEP 3	STEP 4	STEP 5
You complete online enrollment and gain instant access to portal	We contact you to initiate eGauge install	Our energy engineer virtually meets with your electrician to verify eGauge	We ship eGauge and your electrician installs	eGauge install verified and competition begins
		details		

More information and Enrollment Form

Renew

RenewOurSchools Wisconsin - Resource Central

Renew Our Schools

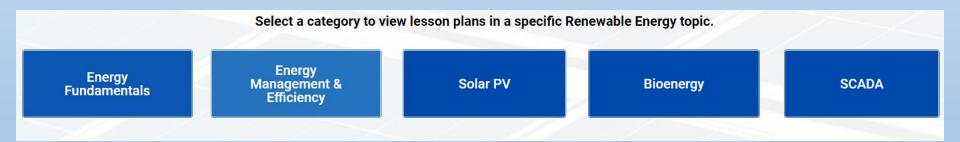
Energy Conservation Competition Place-Based Energy Education Fall 2024 October 7- November 15

- Reduce your school's energy consumption
- Reduce your school's electricity bill
- Reduce your school's carbon footprint

Learn about Participating WI Schools

Renew Our Schools Competition (arcgis.com)

Clean Energy Careers Video Series


The clean energy sector is blossoming with career opportunities. 9 Clean Energy Career Video Profiles

Each video includes lesson slides and student assessment in Google format

https://slipstreaminc.org/cleanenergycareers

General building science resources and connection to Smart Start materials through CREATE

Teaching Materials, Energy Fundamentals

9:40 – 10:00 Sketchbox model of specific buildings

Start in Google Earth, make measurements from satellite image

Collect building data, select building type

Match closest geographic location, check operating schedule

9:40 – 10:00 Sketchbox model of a specific building

Design and operating characteristics:

Building area

Window percent

Number of floors

Adjacency

Aspect ratio

Occupancy schedules

Construction

9:40 – 10:00 Sketchbox model of a specific building

Goodman South Campus

School building

76,000 square feet, three floors

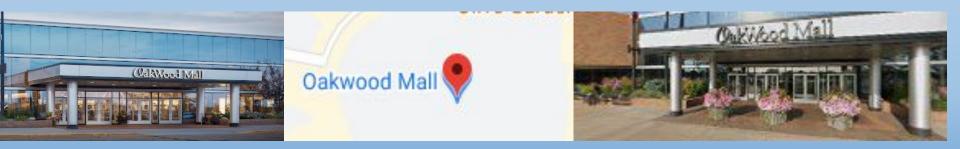
15 ft floor height, 55% glass

Mass walls

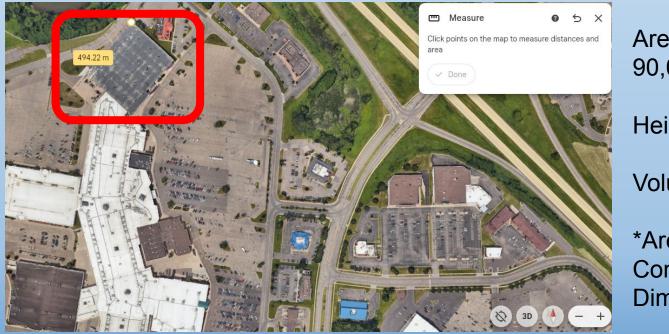
Sketchbox Example: Retail Mall

Have you ever wondered WHY the retail mall model is failing across the United States? Why are there so many online options instead?

- More options?
- Easier to ship?
- Less Employees?
- Or.....



<u>Sketchbox Example: Retail Mall</u>



Let's discover what it costs to operate a "brick & mortar" retail space using Sketchbox!

Eau Claire, WI Oakwood Mall, 4800 Golf Rd, Eau Claire, WI 54701

<u>Sketchbox Example: Retail Mall</u> Using Google Earth, I've taken dimension of <u>one</u> segment of the mall.

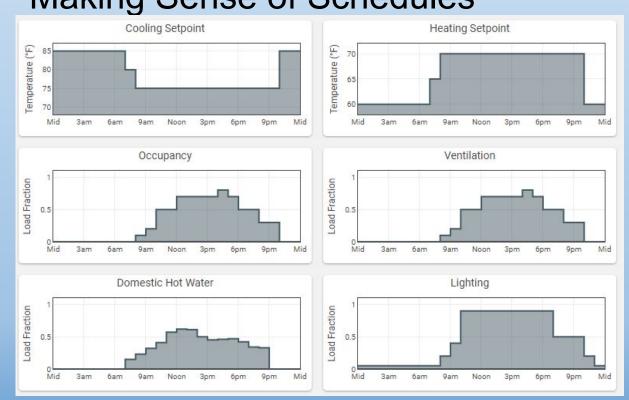


Area: 300ft x 300ft = 90,000ft²

Height: 30ft

Volume: 2,700,000ft³

Area, Volume, Unit Conversion, Dimensional Analysis <u>Sketchbox Example: Retail Mall</u> Heating & Electrical Costs?


Electrical Pre-Set: 10.8 cents/kWh

Actual: 12.9 cents/kWh Height: 30ft

Location: Eau Claire, WI

Window Ratio

<u>Sketchbox Example: Retail Mall</u> Making Sense of Schedules

What do these schedules mean?

Do they relate to one another?

Inverse vs direct relationships

Sketchbox Example: Retail Mall

Costs and Analyzation

Inner and hard hard hard hard jure july hards entrot hore there are a superior and the period

What is the single biggest cost?

What's the most expensive month to operate?

What <u>ONE</u> architectural adjustment could you make to save the most money?

What changes would be seen if this mall was located in Dallas, TX?

Percentages of a Whole

10:00 - 10:10 Existing lessons and Resources Available from from Slipstream

Lesson 1 Intro to building models

Lesson 2 Energy codes and measures

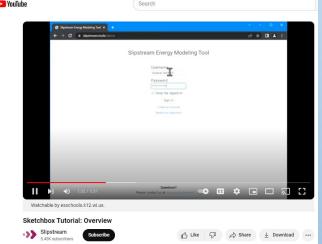
Lesson 3 Building Schedules

Lesson 4 Carbon Emissions

Available from from Wiselearn

Sketchbox Lesson Building Expansion: Energy Cost of Expansion (Dave Luety) This lesson examines increased energy cost for a proposed building expansion at a high school

Energy Modeling and Climate Change (Joe Phillips) When added, this lesson examines changing energy use and cost due to climate change


<u>Nervous? Don't Be</u>!

Sketchbox offers a robust YouTube channel to help get you started!

https://www.youtube.com/@SlipstreamInc/featured

NOTE DUPLICATE ~ slide 31

Slipstream Sketchbox Playlist

Slipstream Sketchbox Youtube Playlist Includes:

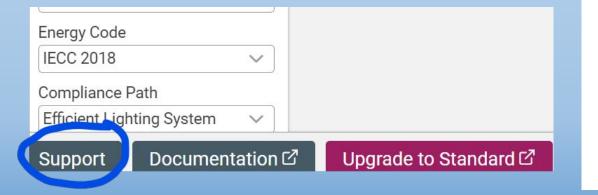
- 3 part case study of a community library
- 53 minute Sketchbox Webinar from 2022

Time to take a break!

Create Account and Login to Sketchbox https://www.sketchbox.io/login

Compile technical questions for Q & A

Return in 10 min


Recording in Progress!

For later training purposes today's large group sessions are being recorded

Support Features in Sketchbox

Unmet Hours for technical questions

"Contact Support \rightarrow " for account issues or software errors

Sketchbox Support

Unmet Hours -- external Q&A forum

Powered By Paperform

In Development

Lesson 5 Energy Use Intensity

Lesson 6 Integrating Sketchbox with solar PV

Lesson two sample results

Table 1

Building model	Annual electric use (kWh)	Annual natural gas use (therm)	Annual energy cost (USD, \$)
Baseline (IECC 2018)	1,030,906	34,336	116,577
IECC 2015	1,111,081	33,763	123,395
ASHRAE 2016	1,066,255	33,384	119,099

Lesson two sample results

Table 2

Building model	Annual electric use (kWh)	Annual natural gas use (therm)	Annual energy cost (USD, \$)
IECC 2018 "no change" (baseline- from table 1)	1,030,906	34,336	116,577
IECC 2018 Four selected improvements	947,063	33,981	108,784
IECC 2018 "best" measures set	686,592	14,533	44,498

Sample results

Energy Cost Savings (\$/year)

Upgrade Roof Insulation Upgrade Wall Insulation Air Sealing Improve Glazing U-Value Improve Glazing SHGC Efficient Interior Lighting Interior Lighting Task Tuning Interior Lighting Occupancy Controls Efficient Exterior Lighting **Exterior Lighting Controls** Miscellaneous Equipment Power Upgrade Cooling Equipment

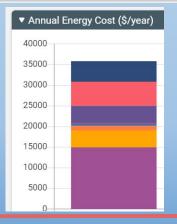
Upgrade Heating Equipment

Efficient Interior Lighting

Sketchbox[™] by Slipstream

Thursday, August 15, 2024: Part 2

Joe Phillips, science educator


James Reichling, MMSD and CREATE

Samara Hamze, KEEP

Dave Vigliotta, Slipstream

My Project PROJECT DESIGN SCHEDULES BASELINE

Agenda (part 2)

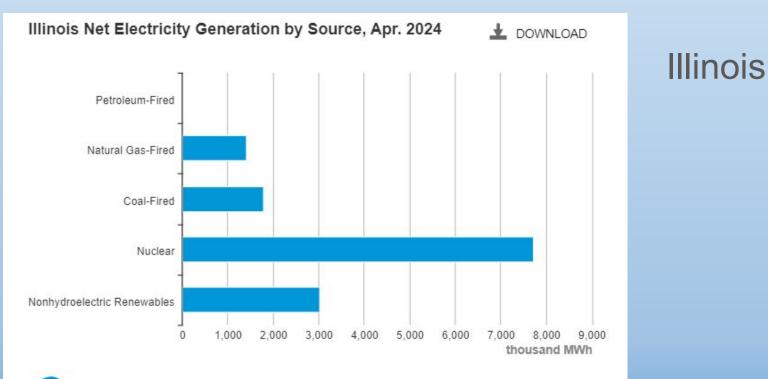
- 10:25 10:35 Integration of external resources (e.g. PV Watts, Future Urban Climates Interactive)
- 10:35 10:50 Sketchbox in breakout groups
- 10:50 11:05 Q & A with Slipstream Staff
- 11:05 11:15 Participant reactions, Conclusion

Integrating Solar Energy with Sketchbox

https://pvwatts.nrel.gov/

Electrification using heat pumps for HVAC and hot water

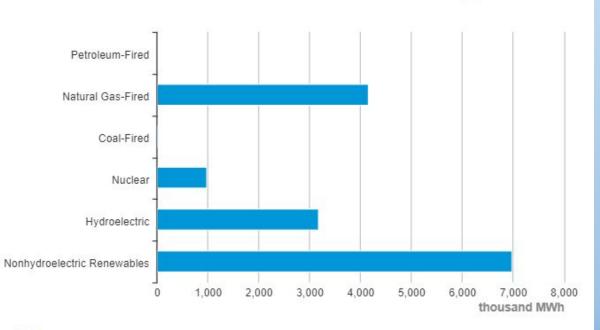
https://slipstreaminc.org/education/air-source-heat-pumps-and-electrification


Air Source Heat Pumps and Electrification

Wednesday, August 21, 2024 | 8:00 AM - 9:00 AM CST

Sketchbox and Climate Change

Future Urban Climates (University of Maryland) https://www.umces.edu/futureurbanclimates


EIA state energy profiles: <u>https://www.eia.gov/state/</u>

EIA state energy profiles: <u>https://www.eia.gov/state/</u>

California Net Electricity Generation by Source, Apr. 2024

California

eia Source: Energy Information Administration, Electric Power Monthly

LEED: https://www.usgbc.org/leed

Leadership in Energy and Environmental Design

U.S. Green Building Council

Working Groups

Model a 30,000 sq ft health care clinic

Report annual electricity consumption, peak electric demand, and annual energy cost for different locations in microsoft form:

https://forms.office.com/r/ykkm1k8fKN

Explore additional features as a team by interest https://forms.office.com/r/ykkm1k8fKN

10:50 - 11:05 Technical Questions with Slipstream Staff

What are the major variables to consider when students are just starting out?

- Learn by doing, try out some of the lessons
- Window/Wall ratio (glazing)
- Lighting
- Types of HVAC systems; heating & cooling efficiencies

How to decide which building type to use when using Sketchbox when that building category is not in Sketchbox:

- Choose one that you think is similar (consider general building usage, the building's operation & occupant usage)
- Alternatively possible to create 2 shells in Sketchbox and use those

What differentiates an Office from a School? Helpful to have reference material.

Drew conducted an on-screen demonstration

Where does Slipstream see the Sketchbox tool going? It seems like it's pretty new.

Genesis out of Slipstream staff need to streamline some of their workflow

Any plans for a specific residential version of Sketchbox? Getting further into the details of wall or roof assemblies?

- Currently good for modeling multi-family buildings (have in templates now)
- Modeling a house or duplex; no because this is so different from a commercial building

11:05 - 11:15

Closing remarks, workshop evaluation, participant lessons Workshop evaluation: <u>https://bit.ly/3YLgb9r</u>

Lesson development / Model Exploration

WI educators may contribute a lesson and receive a stipend

Submit lessons in Word or Google Doc format to Jim: jpreichling@madisoncollege.edu and CC Samara: samara.hamze@uwsp.edu

Deadline: Monday, Sept. 16

Lesson development template: Objectives

1) Demonstrate energy, financial, or CO₂ savings from updating a building schedule

2) Show how the CO_2 impacts of a building are different in different areas of the United States

3) Compare estimated building energy savings from improved building schedules to the savings from adding energy efficient lights

4) Estimate the added annual energy costs for a building expansion

Lesson development template: NGSS standards

HS-LS2-7 Ecosystems: Interactions, Energy, and Dynamics Design, evaluate, and refine a solution for reducing the impacts of human activities on the environment and biodiversity.*

HS-ETS1-4 Engineering Design

Use a computer simulation to model the impact of proposed solutions to a complex real-world problem with numerous criteria and constraints on interactions within and between systems relevant to the problem.

NGSS Science and Engineering Practices

- 1. Asking questions (for science) and defining problems (for engineering)
- 2. Developing and using models
- 3. Planning and carrying out investigations
- 4. Analyzing and interpreting data
- 5. Using mathematics and computational thinking

6. Constructing explanations (for science) and designing solutions (for engineering)

7. Engaging in argument from evidence

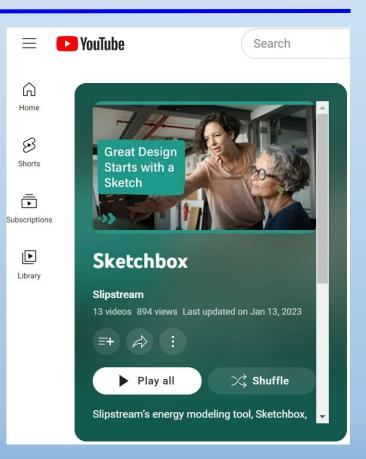
8. Obtaining, evaluating, and communicating information

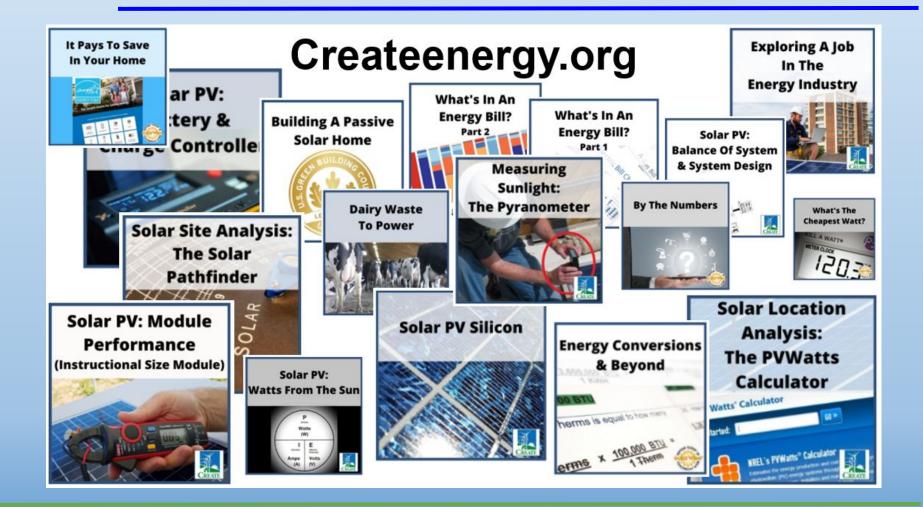
Lesson development template: Metatags

Budget, building code, building design, building envelope, building science, carbon emissions, carbon footprint, computer model, data analysis, efficiency, electricity, energy, energy career, energy conservation, energy economics, energy efficiency, energy management, green building, heating and cooling, HVAC, kwh, natural gas, NG, simulation, sustainability, utilities, utility rates

End of presentation

Career Connections to Sketchbox


Example careers: building manager, energy engineer, architect, HVAC, energy analyst, construction/contractor, sustainability


https://greenbuildingscareermap.org/

createenergy.org Resources \rightarrow teaching materials \rightarrow energy fundamentals \rightarrow exploring a job in the energy industry Sketchbox Support

Youtube tutorials at the sketchbox youtube channel

Support: tools@slipstreaminc.org

UPDATE: General building science resources and connection to Smart Start materials through CREATE

Energy Career Maps through CREATE

https://createenergy.org/resources/

SOLAR TOOLKIT

TEACHING MATERIALS CAREER MAPS

PUBLICATIONS

Student reactions from class trials

High level of engagement

Easy access to results

Desire to independently explore

Students in pilot asking to participate in another round

What did students find most interesting about sketchbox?

"... how small factors can change so many things. I also found predicting them fun."

"How this ties into architecture and buildings"

"How [the building in] California uses less energy but costs more"

"How small changes in building design can greatly influence energy cost"

Additional presentation notes follow on the next slides

Links to Sketchbox lessons 1 - 4 in google doc form

https://docs.google.com/document/d/1fj2sXF77KSPGMQqkucsKC4C8kxy MpLXMhAJ0U3wJfrA/edit?usp=sharing

https://docs.google.com/document/d/12ksKAdrqxvzbYqLVu1RnP-KTPbrx NwLtUIO3El8p2Rk/edit?usp=sharing

https://docs.google.com/document/d/16c0ITKcOpXZkV5R925S7FArZy7w 752yUsV4o0qTTCZk/edit?usp=sharing

https://docs.google.com/document/d/1qGTBNiFDhQyqxo5LgDvcXzc2FN Z0zOGmrjzdYribnnE/edit?usp=sharing Links to Sketchbox lessons 1 - 4 in google doc form

Lesson 1 introduction

Lesson 2 energy code

Lesson 3 schedules and measures

Lesson 4 carbon emissions

Annual Summary

Resu	ts	Tal	ble	C

	Peak Cooling (kBTU/hr)		Peak Electric Demand (kW)	Annual Electric Consumption (kWh)
Baseline	972.1	785.3	134	325849

		不
Annual Natural Gas Consumption (therm)	Annual Energy Cost (\$)	Annual Water Consumption (gal/yr)
9365	35816	700000

Agenda (part 2)

10:00 – 10:15 Technical Q & A with Slipstream

10:15 - 10:25 Integration of external resources (e.g. PV Watts, Future Urban Climates Interactive)

10:25 – 10:35 Intro to Participant Lesson Development

10:35 – 10:45 Resources: KEEP, DPI, CREATE, Slipstream

10:45 – 11:00 Participant reactions, Conclusion

Sample Lesson three results

Table 1

Building model	Annual electric consumption (kWh)	Annual natural gas consumption (therm)	Annual energy cost (\$)
Baseline (<u>simple</u> thermostats)	1,027,748	33,651	115,817
Simple thermostats Weekday 8am – 8 pm	1,030,906	34,336	116,577
Simple thermostats Weekday 8am – 4 pm	1,026,151	33,382	115,488
68 degree heating setpoint 77 degree cooling setpoint	998,770	32,249	112,238

Exceeding code - Lesson 2 overview

Roughly 40 building parameters on the "baseline" tab

Pre-set upgrades on the "measures" tab

Three values for each (no change, better, best)

Lesson 3 and 4 objectives

Investigate scheduling and its impact on building energy

Calculate carbon equivalent emissions avoided due to energy savings

Explore electrification of heating and its impact on emissions

Sample Lesson four results

Table 1

Building model	Annual electric consumption (kWh)	Annual natural gas consumption (therm)	Annual Kg-CO ₂ e
Baseline	326,919	8539	166,544
Energy efficient lights	301,874	8829	158,789
Demand control ventilation	325,514	7568	160,876
Move to Madison, WI	322834	10109	257,932