
Sketchbox™ by Slipstream

Thursday, July 20, 2023

James Reichling, MMSD and CREATE

Samara Hamze, KEEP

Dave Vigliotta, Slipstream

PROJECT DESIGN SCHEDULES BASELINE

James Reichling

Physics and math teacher, Madison Metro School District Instructor, CREATE center

Samara Hamze

Energy Educator, Program Manager at KEEP

Slipstream Staff

Dave Vigliotta

Director of Partnership Development

Lee Shaver

Senior Energy Engineer

Emily Golen

Energy Engineer II

Peggy Heisch

Project Manager

Participant Introductions

Your name

What level you teach / other profession

How long have you been teaching / in industry

Optional: Current work location

Working Groups

Group 1

1 Matt Aumann

2 Liliana Beltran

3 Handi Chandra Putra

4 Joerg Ruegemer

Group 2 1 Deborah Combs

2 Nihal Al Sabbagh

3 Allison Nofzinger

4 Noureddine Zemmouri

Group 3

Group 4

1 Kimberly Garlie-Sukkert 2 Scott Williams

3 Farid Vahedi

4 Emily Meissner

1 Craig Griffie

2 Gabriel de Berm

3 Kang Insung

4 Korn Tantiwanit

Working Groups

Group 5

1 Scott Hanneman

2 Shoumik Desai

3 Ahmed Hussein

4 Gearoid Lydon

Group 6

1 Rick Kamps

2 David Luety

3 Shannon Krack-Levesque

4 Taylor Schneider

Group 7

1 Joseph Phillips

2 Corey Gracie-Griffin

3 Phalak Kaustubh

4 Kevin Silveira

Slipstream Team

Lee Shaver

Dave Vigliotta

Emily Golen

Drew Morrison

Peggy Heisch

Recording in Progress!

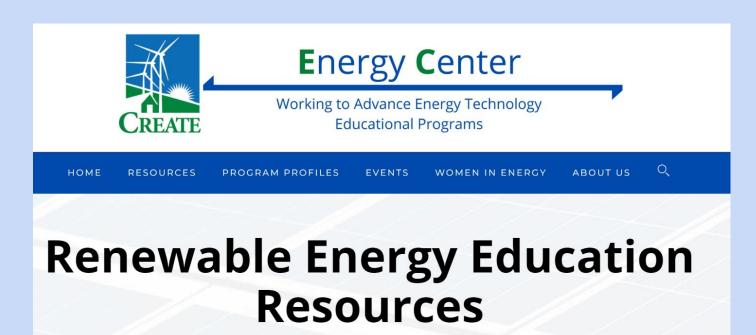
For later training purposes today's large group sessions are being recorded

Thank you

SPONSOR

PARTNERS

>>> slipstream


Accelerating climate solutions. For everyone.

We deliver research, technical assistance, financing, education and training, and programs for stakeholders.

www.slipstreaminc.org

CREATE

Center for Renewable Energy Advanced Technological Education https://createenergy.org/resources/

Brief Agenda

- 1. Building energy modeling and sketchbox™
- 2. Sample lesson one
- 3. Building energy careers, sample lesson two
 - 4. Lunch
- 5. Sample lessons three and four
- 6. Technical Q&A
- 7. Participant lesson development

Detailed morning agenda (part 1)

- 9:00 9:30 Introductions and overview
- 9:30 9:45 Sketchbox features, support, and results
- 9:45 10:00 Introduce lesson one and learning objectives (NGSS, DPI Pathway)
- 10:00 10:10 break

Detailed morning agenda (part 2)

10:10 – 10:40 lesson one work in breakout groups

10:40 - 11:00 lesson debrief, technical questions list

11:00 – 11:10 break

11:45 – noon

11:10 – 11:45 career map, lesson two in breakout groups

lesson debrief, frame individual lessons

Noon - 12:45 lunch, outline individual lessons

Energy use in buildings

US EIA reports buildings account for 39% in 2021

Example strategies to save energy, reduce cost

- upgrade lighting
- scheduling and set points
- update mechanical systems
- building envelope improvements

Energy modeling helps make decisions about which strategies provide the greatest return on investment

US DOE provides DOE2 Building Energy Use and Cost Analysis Software

DOE provides E-Quest as a user interface

Download and install required, learning curve

Sketchbox by Slipstream as a teaching tool

Online user interface to DOE2

Free to use, no download required

Runs on a student chromebook

Preloaded building types, systems/technologies, weather data, utility rates, and many more data

Why teach this to students?

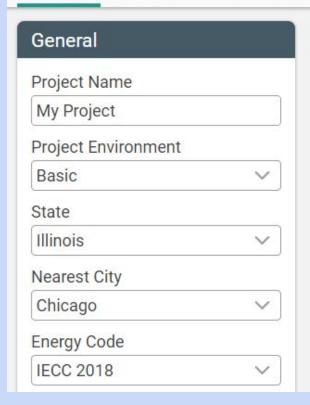
Awareness of resource utilization

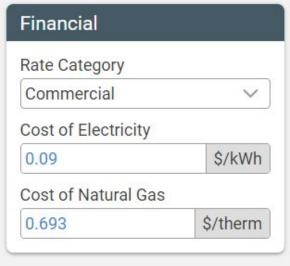
Cost-benefit analysis and business connections

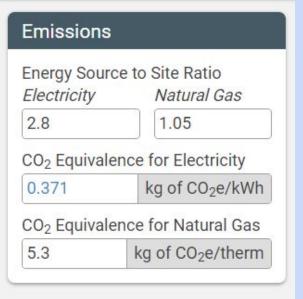
Motivate/excite students about climate solutions

Careers: Building manager, energy engineering, architecture, HVAC, energy analysts, construction/contractor, sustainability

Why teach this to students?

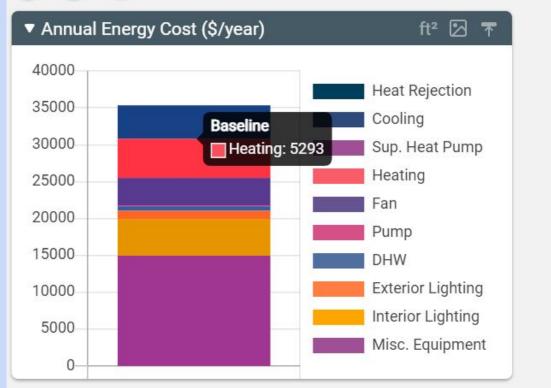

Energy DPI Pathway


Job growth in renewable energy

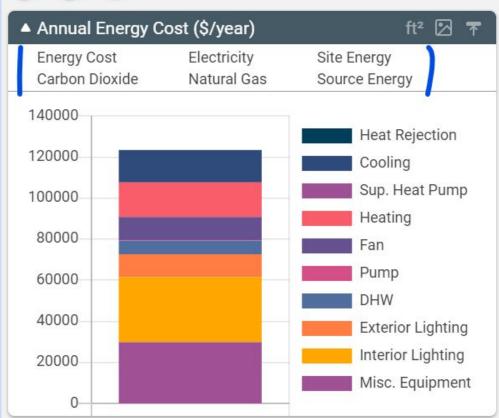

Green buildings career map https://greenbuildingscareermap.org/

Default Project Settings

PROJECT DESIGN SCHEDULES BASELINE MEASURES RESULTS



PROJECT DESIGN SCHEDULES BASELINE MEASURES RESULTS



Energy Cost by Utilization

Other display options

Monthly breakdown

Annual Summary

Results Table 🖺							
	Peak Cooling (kBTU/hr)	Peak Heating (kBTU/hr)	Peak Electric Demand (kW)	Annual Electric Consumption (kWh)			
Baseline	972.1	785.3	134	325849			

		不
Annual Natural Gas Consumption (therm)	Annual Energy Cost (\$)	Annual Water Consumption (gal/yr)
9365	35816	700000

Design Tab Options

Students can change parameters to explore impact on energy utilization and cost. Examples:

Building type (e.g. school, commercial, library, fitness center)

Location

Window Fraction

Spatial Orientation

Energy Code

Example with sketchbox (Lesson one)

Switch to Sketchbox, demonstrate project, design, and results tabs

Access to Sketchbox: https://slipstreaminc.org/sketchbox

Login: https://www.sketchbox.io/login

Email	
Password	
	Sign In
	Create an account
	Forgot your password?

Time to take a break!

Create Account and Login to Sketchbox https://www.sketchbox.io/login

Return in 10 min

Recording in Progress!

For later training purposes today's large group sessions are being recorded

Breakout room recommendations

Camera on during breakout groups when possible

One participant runs sketchbox and shares their screen

One participant records notes for the group and reports

Be kind! We have different levels of technical expertise

Example with sketchbox (Lesson one)

Breakout rooms (Re-introductions, choose spokesperson)

Group reporting

- 1. How would your students respond to this lesson?
- 2. What do you find yourself wondering about?
- 3. What extensions would you add?

Thirty minutes

Post-lesson discussion

Electricity, Natural Gas, Overall Cost

- 1. Cut building square footage in half
- 2. Double window percentage
- 3. Change location (Chicago to Los Angeles)

Example with sketchbox (Lesson one)

Group reporting

- 1. How would your students respond to this lesson?
- 2. What do you find yourself wondering about?
- 3. What extensions would you add?

Participant discussion - RESULTS

Scenario	Electricity (MWh)	Natural Gas Therms	Total Cost Dollars
Baseline	1031	34,300	116,600
Half area (75,000 ft ²)	513	18,400	58,900
Double window area	1070	35,000	120,000
Move to LA	1060	9750	167,900

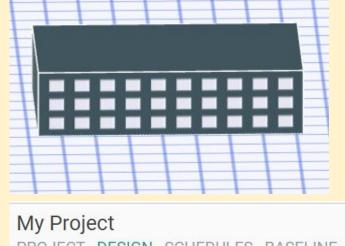
Technical Questions for Q&A at 2:15 pm

Option to add questions to jamboard (link in chat)
https://jamboard.google.com/d/1fYF9XmywP6mAvO5I9q
ZRqouYosOMjXFzeFPa50MpWc8/edit?usp=sharing

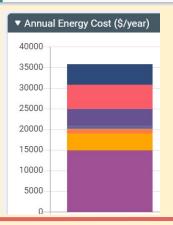
Add your name to questions in case of clarification

Time to take a break!

Optional: Continue exploring Sketchbox


Return in 10 min

Sketchbox™ by Slipstream


Thursday, July 20, 2023

James Reichling, MMSD and **CREATE** Samara Hamze, KEEP Dave Vigliotta, Slipstream

Session Two

PROJECT DESIGN SCHEDULES BASELINE

Brief Agenda

Building energy careers, sample lesson two

Lunch

Sample lessons three and four

Technical Q&A

Participant lesson development

Detailed morning agenda (Lesson 2)

11:10 – 11:45 career map, lesson two in breakout groups

11:45 – noon lesson debrief, frame individual lessons

Noon - 12:45 lunch, outline individual lessons

Career Connections to Sketchbox

Example careers: building manager, energy engineer, architect, HVAC, energy analyst, construction/contractor, sustainability

https://greenbuildingscareermap.org/

createenergy.org
Resources → teaching materials → energy
fundamentals → exploring a job in the energy industry

DPI Regional Career maps

https://dpi.wi.gov/sites/default/files/imce/pathways-wisconsin/ 2022 11 14 Final Energy Career Pathway 11.14.22.pdf

Energy Generation & Conservation

Energy Transmission, Distribution, & Storage

Training levels: H.S. Diploma, Certification or Technical Diploma, Registered Apprenticeship, Associates Degree, Bachelor's Degree and beyond

DPI Regional Career maps

Energy Career Pathway <Name of Region> 2022-2024

EXPLORE: Click on the links to find the job titles that seem most interesting to you to learn more! Save any jobs account so that you can create an Academic and Career Plan (ACP) later on.

Educational Level May also require work experience	Energy Generation & Conservation		
High School Diploma, Certification	Solar PV Installer * Electrical & Gas Power Line Helper * Utility Log Range \$xxx,xxx-x		
Certification or Technical Diploma	Distribution Generation Operator Solar/Wind Energy Technician * Building Automation Technician * Energy Auditor O Residential HVAC Technician * Range \$xxx,xxx-xxx,xxx		
Registered Apprenticeship	Substation Electrician * Apprentice Plant Attendant * Range \$xxx,xxx-xxx,xxx		

Exploring A Job In The **Energy Industry**

Exploring A Job In The Energy Industry

encourages students to explore a potential, future energy job. Using Career Maps, students research compensation, qualifications, job demands, and advancement opportunities for the job they selected.

Renewable Energy Career Maps

- Solar
- Climate Control
- Bioenergy
- Wind
- Green Buildings

Clean Energy Careers Video Series

The clean energy sector is blossoming with career opportunities.

9 Clean Energy Career Video Profiles

Each video includes lesson slides and student assessment in Google format

https://slipstreaminc.org/cleanenergycareers

Energy Codes

International Code Council
IECC - International Energy Conservation Code

ASHRAE

American Society of Heating, Refrigeration, and Air Conditioning Engineers

Codes updated on three cycles

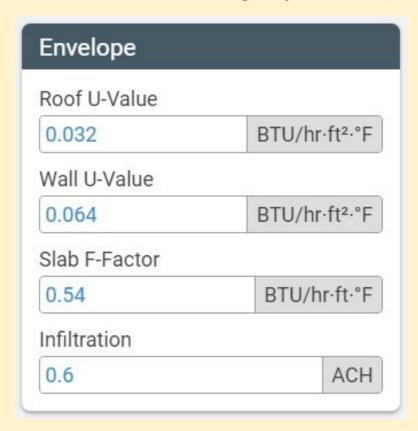
Exceeding code

Roughly 40 building parameters on the "baseline" tab

Pre-set upgrades on the "measures" tab

Three values for each (no change, better, best)

Baseline categories


Envelope Glazing

Skylights Lighting

Internal Loads Domestic Hot Water

Heating and Cooling Ventilation

Baseline category example: Envelope

Technical vocabulary for this lesson

Roof U-value

Solar Heat Gain Coefficient (SHGC)

Interior lighting power

% E_{th} (for heating)

Technical vocabulary for this lesson

Roof U-value

Solar Heat Gain Coefficient (SHGC)

Interior lighting power

% E_{th} (for heating)

Sketchbox demonstration

Change energy code

Baseline tab

Measures sets

Breakout room recommendations

Camera on during breakout groups when possible

One participant runs sketchbox and shares their screen

One participant records notes for the group and reports

Be kind! We have different levels of technical expertise

Access to Sketchbox: https://slipstreaminc.org/sketchbox

Login: https://www.sketchbox.io/login

Wel	come to Sketchbox!
Email	
Password	
-	
	Sign In
	Create an account
	Forgot your password?

Sketchbox Lesson Two

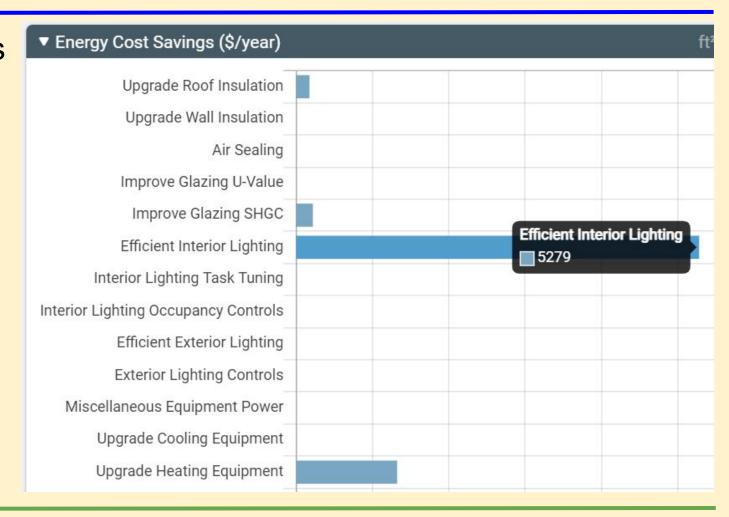
Breakout rooms (choose new spokesperson)

Group reporting

- 1. Summarize what you learned
- 2. Additional questions / ideas about energy code
- 3. What other measures are you most interested in?

Twenty-five minutes

Recording in Progress!


For later training purposes today's large group sessions are being recorded

Lesson two sample results

Table 1

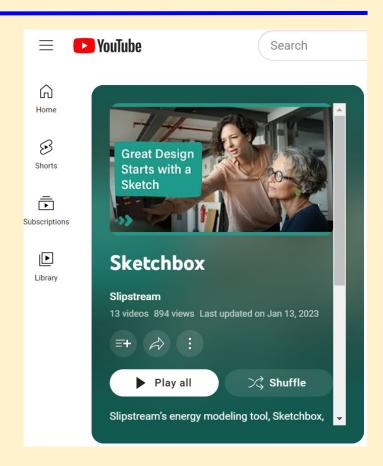
Building model	Annual electric use (kWh)	Annual natural gas use (therm)	Annual energy cost (USD, \$)
Baseline (IECC 2018)	1,030,906	34,336	116,577
IECC 2015	1,111,081	33,763	123,395
ASHRAE 2016	1,066,255	33,384	119,099

Sample results

Lesson two sample results

Table 2

Building model	Annual electric use (kWh)	Annual natural gas use (therm)	Annual energy cost (USD, \$)
IECC 2018 "no change" (baseline- from table 1)	1,030,906	34,336	116,577
IECC 2018 Four selected improvements	947,063	33,981	108,784
IECC 2018 "best" measures set	686,592	14,533	44,498


Sketchbox Support

Youtube tutorials at the sketchbox youtube channel

Support: tools@slipstreaminc.org

Continue adding to technical Q&A

https://jamboard.google.com/d/1fYF9XmywP6mAvO5l9q ZRqouYosOMjXFzeFPa50MpWc8/edit?usp=sharing

Lesson development template: Objectives

- 1) Demonstrate energy, financial, or CO₂ savings from updating a building schedule
- 2) Show how the CO₂ impacts of a building are different in different areas of the United States
- 3) Compare estimated building energy savings from improved building schedules to the savings from adding energy efficient lights
- 4) Estimate the added annual energy costs for a building expansion

Lesson development template: NGSS standards

HS-LS2-7 Ecosystems: Interactions, Energy, and Dynamics Design, evaluate, and refine a solution for reducing the impacts of human activities on the environment and biodiversity.*

HS-ETS1-4 Engineering Design

Use a computer simulation to model the impact of proposed solutions to a complex real-world problem with numerous criteria and constraints on interactions within and between systems relevant to the problem.

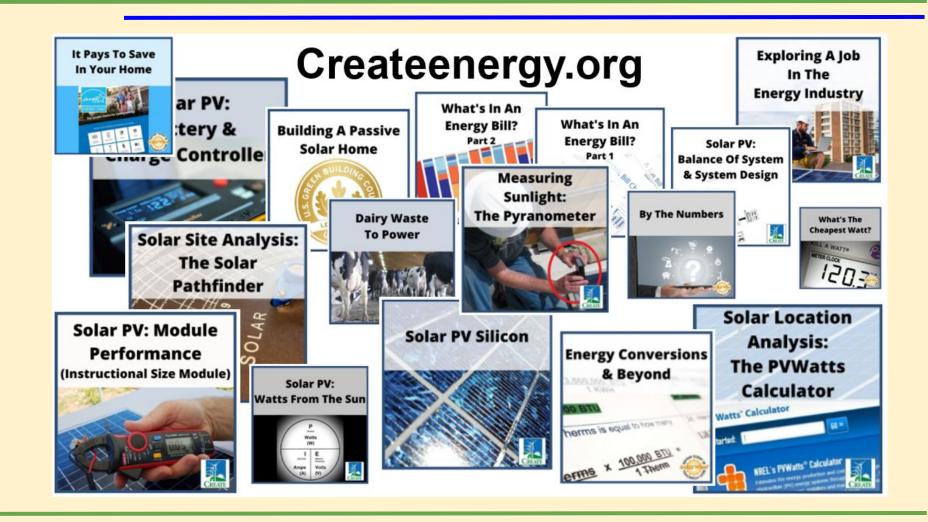
NGSS Science and Engineering Practices

- 1. Asking questions (for science) and defining problems (for engineering)
- 2. Developing and using models
- 3. Planning and carrying out investigations
- 4. Analyzing and interpreting data
- 5. Using mathematics and computational thinking
- 6. Constructing explanations (for science) and designing solutions (for engineering)
- 7. Engaging in argument from evidence
- 8. Obtaining, evaluating, and communicating information

Lesson development template: Metatags

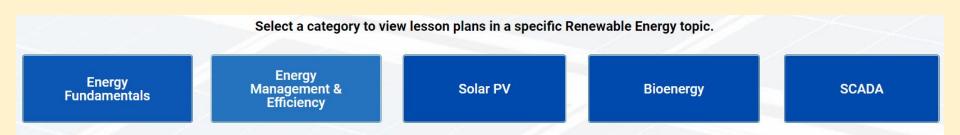
Budget, building code, building design, building envelope, building science, carbon emissions, carbon footprint, computer model, data analysis, efficiency, electricity, energy, energy career, energy conservation, energy economics, energy efficiency, energy management, green building, heating and cooling, HVAC, kwh, natural gas, NG, simulation, sustainability, utilities, utility rates

End of morning session: Lunch 12:00 - 12:45 pm


Suggested activities:

Sketchbox youtube channel

https://www.youtube.com/watch?v=F8dRupH33Jc&list=PL-m tqGdh8bvh3GsfC1Fpe8bJSO2uDRFo5


Continue exploring Sketchbox

Start lesson development

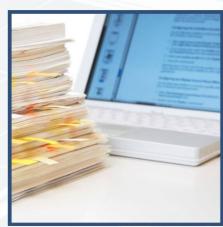
General building science resources and connection to Smart Start materials through CREATE

Teaching Materials, Energy Fundamentals

Energy Career Maps through CREATE

https://createenergy.org/resources/

SOLAR TOOLKIT



TEACHING MATERIALS CAREER MAPS

PUBLICATIONS

Brief Agenda

Welcome back from lunch!

Sample lessons three and four

Technical Q&A

Participant lesson development

Recording in Progress!

For later training purposes today's large group sessions are being recorded

Detailed afternoon agenda (part 1)

15 min	review objectives, student responses,
--------	---------------------------------------

25 min lessons 3, 4 and open exploration add to tech questions, share lesson ideas

20 min lesson review, resources, objective discussion

break

5 min

Detailed afternoon agenda (part 2)

30 min technical Q and A with slipstream, additional career connections

15 min workshop evaluation, closing remarks

Lesson 3 and 4 objectives

Investigate scheduling and its impact on building energy

Calculate carbon equivalent emissions avoided due to energy savings

Explore electrification of heating and its impact on emissions

Student reactions from class trials

High level of engagement

Easy access to results

Desire to independently explore

Students in pilot asking to participate in another round

What did students find most interesting about sketchbox?

"... how small factors can change so many things. I also found predicting them fun."

"How this ties into architecture and buildings"

"How [the building in] California uses less energy but costs more"

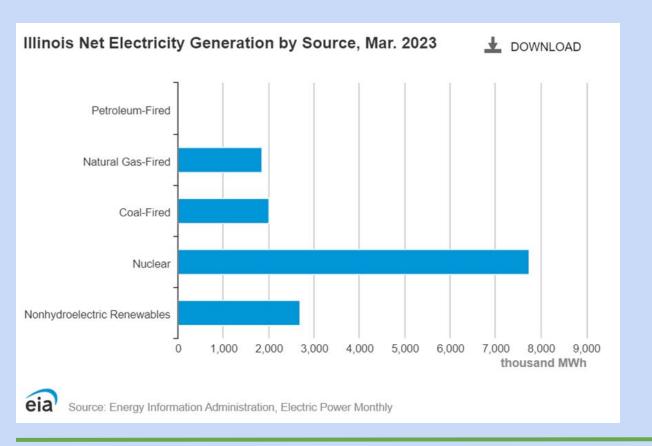
"How small changes in building design can greatly influence energy cost"

Recording in Progress!

For later training purposes today's large group sessions are being recorded

Sample Lesson three results

Table 1


Building model	Annual electric consumption (kWh)	Annual natural gas consumption (therm)	Annual energy cost (\$)
Baseline (simple thermostats)	1,027,748	33,651	115,817
Simple thermostats Weekday 8am – 8 pm	1,030,906	34,336	116,577
Simple thermostats Weekday 8am – 4 pm	1,026,151	33,382	115,488
68 degree heating setpoint	998,770	32,249	112,238
77 degree cooling setpoint			

Sample Lesson four results

Table 1

Building model	Annual electric consumption (kWh)	Annual natural gas consumption (therm)	Annual Kg-CO ₂ e
Baseline	326,919	8539	166,544
Energy efficient lights	301,874	8829	158,789
Demand control ventilation	325,514	7568	160,876
Move to Madison, WI	322834	10109	257,932

EIA state energy profiles: https://www.eia.gov/state/

After lessons 3 and 4 what is needed next?

PV watts demo

https://pvwatts.nrel.gov/

LEED: https://www.usgbc.org/leed

Leadership in Energy and Environmental Design

U.S. Green Building Council

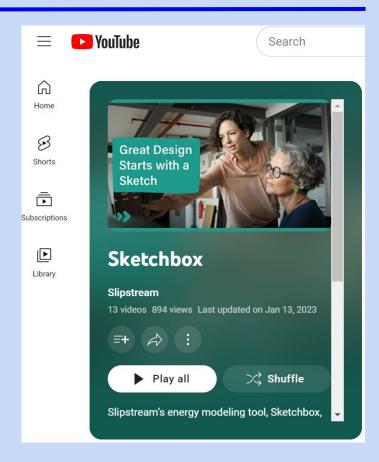
Lesson development / Model Exploration

WI educators may contribute a lesson and receive a stipend

Submit lessons in Word or Google Doc format to Jim: jpreichling@madisoncollege.edu and CC Samara: samara.hamze@uwsp.edu

Deadline: Tuesday, August 8th

If needed, take a break during work session


Return at 2:15 pm for technical Q&A

Sketchbox Support

Youtube tutorials at the sketchbox youtube channel

Support: tools@slipstreaminc.org

UPDATE: General building science resources and connection to Smart Start materials through CREATE

Recording in Progress!

For later training purposes today's large group sessions are being recorded

Technical Q&A

Lee Shaver
Senior Energy Engineer

Emily GolenEnergy Engineer II

Closing remarks, workshop evaluation

Workshop evaluation:

https://uwsp.az1.qualtrics.com/jfe/form/SV_doPONzXjVnW0FxA

End of presentation

Additional presentation notes follow on the next slides

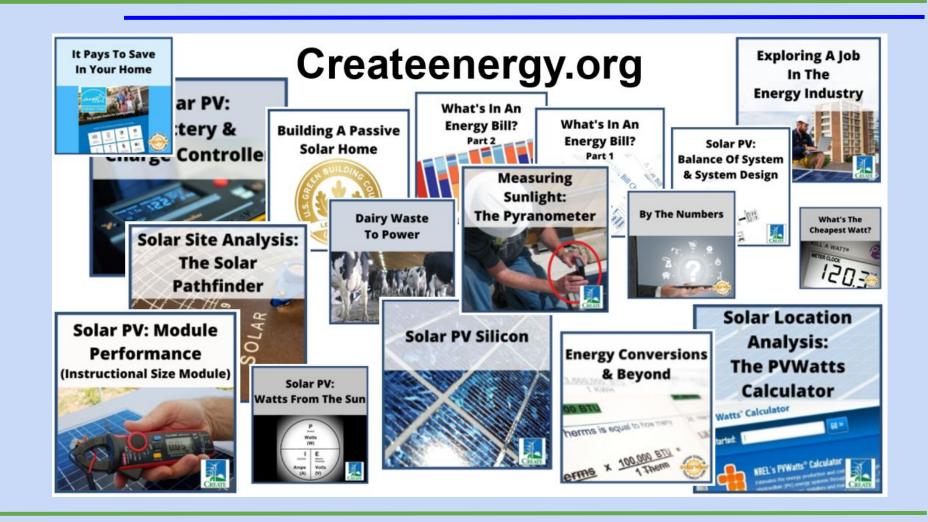
Links to Sketchbox lessons 1 - 4 in google doc form

https://docs.google.com/document/d/1fj2sXF77KSPGMQqkucsKC4C8kxy MpLXMhAJ0U3wJfrA/edit?usp=sharing

https://docs.google.com/document/d/12ksKAdrqxvzbYqLVu1RnP-KTPbrx NwLtUIO3El8p2Rk/edit?usp=sharing

https://docs.google.com/document/d/16c0ITKcOpXZkV5R925S7FArZy7w 752yUsV4o0qTTCZk/edit?usp=sharing

https://docs.google.com/document/d/1qGTBNiFDhQyqxo5LgDvcXzc2FNZ0zOGmrjzdYribnnE/edit?usp=sharing


Links to Sketchbox lessons 1 - 4 in google doc form

Lesson 1 introduction

Lesson 2 energy code

Lesson 3 schedules and measures

Lesson 4 carbon emissions

