
 

 

 

 

 

PREPARED BY 

Energy Center of Wisconsin 

 

Commissioning for Optimal 

Savings from Daylight 

Controls 

 

February 19, 2013 

 

A Final Report for Minnesota Department of Commerce 
Conservation and Applied Research and Development grant project 
#34558. 

 



  

Energy Center of Wisconsin  

ECW Report Number – 264-1 

Commissioning for Optimal Savings from 

Daylight Controls   

February 19, 2013 

 

Scott Hackel 

Senior Energy Engineer, Energy Center of Wisconsin 

Scott Schuetter 

Senior Energy Engineer, Energy Center of Wisconsin 

 

 

  

 

 

 

 

455 Science Drive, Suite 200 

Madison, WI 53711 

608.238.4601 

www.ecw.org 

 



Commissioning for Optimal Savings from Daylight Controls February 19, 2013 

Energy Center of Wisconsin  

Copyright © 2013 Energy Center of Wisconsin.  

All rights reserved 

This document was prepared as an account of work by the Energy Center of Wisconsin for the Minnesota 

Department of Commerce. Neither the Energy Center, participants in the Energy Center, the 

organization(s) listed herein, nor any person on behalf of any of the organizations mentioned herein: 

(a) makes any warranty, expressed or implied, with respect to the use of any information, apparatus, 

method, or process disclosed in this document or that such use may not infringe privately owned rights; or 

(b) assumes any liability with respect to the use of, or damages resulting from the use of, any 

information, apparatus, method, or process disclosed in this document. 

 

Project Manager 

Scott Hackel 

 

Acknowledgements 

Other Energy Center of Wisconsin staff who contributed to this project include Mark Vincent, Dan 

Cautley, and Tom Holaday. Staff from Lutron Electronics also generously assisted with the 

commissioning step for Lutron control systems; contractors assisted in commissioning of other systems. 

The project also benefitted greatly from the time and effort of each of the building managers and 

engineers at the sites we studied. Thank you to all who participated. 

The project was possible as a result of grant support from the Minnesota Department of Commerce, 

Division of Energy Resources (funded by Minnesota ratepayers). The cooperation of Division staff was 

also appreciated. 

 



Commissioning for Optimal Savings from Daylight Controls February 19, 2013 

Energy Center of Wisconsin i  

TABLE OF CONTENTS 

Abstract ......................................................................................................................................................... 1 

Report Summary ........................................................................................................................................... 1 

Background and Objective ........................................................................................................................ 1 

Results ....................................................................................................................................................... 2 

Introduction ................................................................................................................................................... 5 

Background ............................................................................................................................................... 5 

Objective ................................................................................................................................................... 6 

Literature Review .......................................................................................................................................... 8 

Data Collection ........................................................................................................................................... 11 

The Spaces .............................................................................................................................................. 11 

Data Acquisition Protocol ....................................................................................................................... 13 

Methodology and Analysis ......................................................................................................................... 15 

Lighting Energy Usage and Savings ....................................................................................................... 15 

Workplane Illuminance ........................................................................................................................... 15 

System Effectiveness .............................................................................................................................. 20 

Effects on Heating and Cooling Energy ................................................................................................. 22 

Utilizing multiple periods of data collection ........................................................................................... 24 

Recommissioning Process................................................................................................................... 25 

Normalization ..................................................................................................................................... 26 

Data Quality Control ............................................................................................................................... 27 

Extrapolation Methodology .................................................................................................................... 28 

Modeling Methodology .......................................................................................................................... 31 

Results ......................................................................................................................................................... 38 

Daylighting Control Energy Savings ...................................................................................................... 38 



Commissioning for Optimal Savings from Daylight Controls February 19, 2013 

Energy Center of Wisconsin ii  

Typical Energy Savings ...................................................................................................................... 38 

Savings Due to Commissioning .......................................................................................................... 42 

Heating and Cooling Effects of Daylighting Control ......................................................................... 48 

Comparison to Modeling .................................................................................................................... 49 

Some Daylighting Design Conclusions .............................................................................................. 51 

Economics of Daylighting ...................................................................................................................... 54 

Utilizing More Daylight in Minnesota Buildings ................................................................................... 56 

Steps To More Effective Daylighting Control ........................................................................................ 58 

Operational Problems .......................................................................................................................... 58 

Lessons Learned: Controls Startup Process ........................................................................................ 60 

Lessons Learned: Controls Maintenance ............................................................................................ 61 

Use of Alternate Control Methods ...................................................................................................... 62 

Regarding Occupant Comfort ............................................................................................................. 64 

Conclusions and Future Work..................................................................................................................... 66 

Application Details for Minnesota Utilities ............................................................................................ 68 

Further work............................................................................................................................................ 69 

Glossary ...................................................................................................................................................... 70 

References ................................................................................................................................................... 70 

Appendices .................................................................................................................................................. 74 

A. Survey Instruments ......................................................................................................................... 74 

B. Site Information Collection Checklist ............................................................................................. 74 

Appendix A. ............................................................................................................................................ 75 

Building Operator Interview Questions .............................................................................................. 75 

Occupant Questionnaire ...................................................................................................................... 76 

Appendix B. ............................................................................................................................................ 77 



Commissioning for Optimal Savings from Daylight Controls February 19, 2013 

Energy Center of Wisconsin 1  

ABSTRACT 

Automatic daylighting control is an energy savings strategy employed in many sustainable building 

projects. While considerable effort is often expended in the architectural and lighting design of 

daylighting control strategies, the actual execution of the controls is an area for substantial improvement. 

Best practices suggest that successful automatic daylighting controls require a significant commissioning 

effort (including calibration and functional testing) in order to reach full energy-savings potential. In this 

report, we discuss the results of monitoring and commissioning several daylighting control systems in 

Minnesota and Wisconsin. Results show potential for economical energy savings from daylighting 

controls, but that there are challenges in reaching that potential. Significant additional savings was 

observed with commissioning of the systems. Guidelines for successful execution, startup, and 

commissioning of these systems are also addressed in the report. 

REPORT SUMMARY 

BACKGROUND AND OBJECTIVE 

Daylighting control, or daylight harvesting, is an energy savings strategy employed in many sustainable 

building projects. The technology, as it is defined in this report, refers to automatic daylighting control, in 

which the electric light levels in a building are automatically controlled (versus manually) based on the 

amount of natural daylight entering the space. Though the technology is still in a relatively early stage of 

adoption throughout much of the Midwest, it is growing in popularity, and new commercial building and 

energy codes are beginning to require it. But barriers still remain to successful implementation of the 

technology as mainstream practice in the region. The fundamental pieces of the system that generally 

receive much of the research and consulting focus are the fenestration design and the design/selection of 

the luminaires being controlled. However, in our experience the architectural and lighting design 

increasingly is proficient, and therefore the execution of the controls is more often the primary 

determinant of success. Even after a thorough design process, best practices suggest that successful 

automatic daylighting controls require significant calibration and commissioning efforts during and after 

construction in order to function properly and reach their energy savings potential. But―in addition to 

our own anecdotal evidence―research has suggested that operation falls well short of optimal after 

typical field calibration and startup procedures.  

In this study we measure, analyze, and demonstrate the importance of commissioning daylighting 

systems, with specific focus on the calibration and functional testing aspect of commissioning that occur 

at startup. We hoped to determine the typical level of success achieved in commissioning, as well as the 

amount of savings being missed (and conversely, the amount of savings captured). If our hypothesis was 

correct and systems were falling short of optimal savings, then building professionals may be able to 

adjust practices, modify control specifications, and restate or simply include commissioning guidelines in 

projects where they are currently not applied to lighting. Efficiency programs in Minnesota and elsewhere 

could also use the results of the study to provide guidance when recommending daylighting controls and 

possibly add commissioning as a requirement of certain daylighting control savings measures. 

To that end, we collected sub-hourly measurements of illuminance, lighting power, and heating/cooling 

data for 20 office and public assembly spaces in Minnesota and Wisconsin (a third major daylit building 
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type, education, was left out of this study). Measurements were taken with the controls as they were 

found, and then repeated with the controls recommissioned
1
 as closely as possible to ideal operation. 

RESULTS  

The median daylighting control system was saving 23% of lighting energy, including impacts on heating 

and cooling, during our initial measurements. This translated to 915 kWh saved for every kW of lighting 

controlled. But the average effectiveness (the energy saved versus energy saved with ideal control) of the 

controls as we found them was only 51%. This meant that almost half of the potential savings from these 

controls was not captured due to imperfect controls operation. In fact, four of the spaces had zero savings 

when we first measured them.  

This low level of effectiveness was evidence of the lack of controls execution that we predicted. To 

demonstrate the positive impact of commissioning and subsequent controls operation on performance of a 

system, we recommissioned each system and then collected more data. We spent an hour or two in each 

space completing basic startup tasks such as tuning/calibration, shielding, and redirecting sensors, 

connecting disconnected systems, changing timing settings, and other adjustments. Figure S1 

demonstrates the change in savings from before commissioning to after. Median lighting energy savings 

increased to 63%, or 1,976 kWh for each kW of lighting controlled (including heating/cooling impacts). 

Figure S1. Energy savings in each space shown both before and after our recommissioning effort. 

 

                                                      

1 
We use the term recommissioned because all of these systems have operated for multiple years already, but note that it is 

possible that some were never initially commissioned. 
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We identified several problems that contributed to the initially lower performance level of the controls. 

Some of these problems (in decreasing order of frequency were): control calibration, improper zoning, 

heavy internal shading, improper relay connection, and furniture selection. Most of these problems were 

solved or mitigated through our basic commissioning process. Two issues could not be solved by this 

process. First, furniture selection issues occurred with cubicle walls that were too high; control systems 

performed well when the walls were at least five feet lower than the window head height. And secondly, 

the heavy internal shading was a result of glare problems, which should have been studied more closely in 

design. 

With the results of our study showing potential for energy savings from daylighting controls but 

challenges in reaching that potential, we close by summarizing three opportunities for the industry to 

achieve the potential that daylighting controls offer. 

OPPORTUNITY #1 

When installed, commissioned, and operated to perform as designed, daylighting controls can be an 

economically attractive solution. With the levels of performance we measured, owners break even at a 

cost of $1,000-2,200 per kW of controlled lighting for these systems, which is in line with current system 

costs. This opportunity is most promising in new construction or major renovation, where daylighting can 

be included as part of the design. But there are retrofit opportunities wherever daylight is abundant. Some 

utility programs (in Minnesota, Conservation Improvement Programs) take advantage of this savings 

opportunity already, in prescriptive and comprehensive programs. Those that do not could acquire 

additional savings with this measure―we estimate annual achievable potential between 1,100 – 5,600 

MWh for the state.  

OPPORTUNITY #2 

We have identified a significant amount of savings being „left on the table‟ in systems that are designed 

for substantial energy savings but which fall short. The median improvement in system savings with our 

commissioning effort was 88%, or 690 kWh per kW controlled. A path to retaining these savings in 

projects is a more robust, formalized commissioning focus on daylighting control systems. This value 

needs to be communicated in discussions among owners, designers, contractors, and utility program 

managers. The pieces of this commissioning effort that we found lacking and in need of formalization 

include: establishment of illuminance targets, review of design documents for component location, 

orientation, and sequence, functional testing of controls (including tuning), and verification that proper 

owner training has occurred (and the importance of those controls conveyed to the owner). In theory, 

commissioning of daylighting should already occur on projects with 3
rd

-party commissioning authorities, 

but several of the buildings we studied that had such an arrangement, had not commissioned the controls. 

The daylighting controls should be formalized into the commissioning scope and specifications early in 

design. Manufacturers can also get involved by providing thorough commissioning along with products, 

and perhaps more importantly by simplifying the controls interfaces. For utility program managers, this 

opportunity does not represent potential for new savings, but a risk mitigation strategy for the existing 

daylighting savings stream.  

OPPORTUNITY #3 

Finally, there is a substantial number of daylighting control systems already implemented that have room 

for improvement due to incomplete execution. Recommissioning saved an additional 690 kWh per kW of 
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lighting energy in the median case, and up to 2,420 kWh per kW in the worst case. This potential exists as 

an opportunity for consultants and contractors to offer a service in recommissioning of daylighting control 

systems, as well as an opportunity for Minnesota utility programs to include as a targeted component of 

lighting programs. We estimate a statewide annual achievable potential at 400 – 1,500 MWh from this 

opportunity. 
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INTRODUCTION 

BACKGROUND 

Daylighting control, or daylight harvesting, has matured into a common energy savings strategy 

employed in many sustainable building projects. The technology, as it is defined in this report, refers to 

automatic daylighting control, in which the electric light levels in a building are automatically controlled 

(versus manually) based on the amount of natural daylight entering the space. A common approach in 

commercial buildings is to configure the daylighting controls in a closed loop. This involves placing a 

photosensor in the controlled space such that it measures light level in the space directly, and is therefore 

affected by both electric and natural light. For this project we studied this type of system: closed loop, 

automatic daylighting controls.  

As in other areas of the country, daylighting controls are increasingly being installed in buildings in the 

Midwest. But, the technology is still in a relatively early stage of adoption by much of the region‟s 

construction industry. And retrofits of these systems are even less common. Recently, new commercial 

building and energy codes are beginning to require daylighting control. But several barriers still remain to 

successful implementation of the technology as mainstream practice in the region. A significant focus of 

research and consulting efforts in this area has been the architectural and lighting design of daylighting 

control strategies. This is reasonable since the fenestration allowing the daylight to enter the space and the 

luminaires being controlled are the two fundamental pieces of the system. If the daylighting strategy is 

not explicitly considered in these two design disciplines, the system has a high chance of failure.
2
 

However, in our experience consulting on, auditing, and simply occupying spaces with daylighting 

control, we have found that the architectural and lighting design increasingly is proficient, although still 

not universally optimal (there is room for improvement in the industry here as well).  

More often, at least anecdotally, we notice that the execution of the controls leads to performance issues. 

Even after a thorough design process, best practices suggest that successful automatic daylighting controls 

require significant calibration and commissioning efforts during and after construction in order to 

function properly and reach their energy savings potential.
3
 But in addition to our own anecdotal 

evidence, some research has suggested that operation falls well short of optimal with typical field 

calibration and startup procedures.
 4,5

 This occurs even after significant effort and cost have gone into 

producing an architectural and lighting design specifically for daylighting control. Finally, 

commissioning has been mentioned in the 2012 International Energy Conservation Code (IECC), the new 

energy code slowly being adopted around the country
6
. This code mandates commissioning of daylighting 

controls, though there are few specifics regarding the steps involved, and enforcement is a potential 

problem. 

                                                      

2 “What‟s Wrong with Daylighting? Where It Goes Wrong and How Users Respond to Failure,” Vaidya, P., McDougall, T., 

Steinbock, J., Douglas, J., and Eijadi, D., Proceedings of ACEEE Summer Study, Panel 7, August, 2004 and “Sidelighting 

Photocontrols Field Study,” Heschong Mahone Group, Inc., Report #06-152, 2005 
3 “Tips for Daylighting with Windows”, Lawrence Berkeley Laboratory: 

http://windows.lbl.gov/daylighting/designguide/designguide.html, accessed July 2012. 
4 “On the Calibration and Commissioning of Lighting Controls,” Rubinstein, F., Avery, D., Jennings, J., and Blanc, S., 

Proceedings of the Right Light 4 Conference, Copenhagen, Denmark, November 19 – 21, 1997.  
5 “Sidelighting Photocontrols Field Study,” Heschong Mahone Group, Inc., Report #06-152, 2005 
6 This code will likely be proposed for adoption in Minnesota in late 2013. 

http://windows.lbl.gov/daylighting/designguide/designguide.html
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This loss of potential savings from daylighting controls wastes on the order of one to three kWh for every 

square foot of daylit space each year throughout the United States (and the world). In Minnesota, utility 

efficiency programs (known as Conservation Improvement Programs, or CIPs) already widely 

recommend automatic daylighting controls as a solution to save energy in commercial buildings. Some of 

these programs provide financial incentives for doing so; incentives are common in new construction but 

can be found in retrofit programs (typically on a custom basis, especially in new construction, but 

prescriptively in some cases).
7
 Therefore, the state of Minnesota funded this research examining 

daylighting control operation in an effort to more effectively capture savings from this opportunity. The 

buildings we studied in Minnesota are similar enough to the rest of the Midwest and most of the country 

that the results should be widely applicable to those areas as well.  

OBJECTIVE 

In this study we measure, analyze, and demonstrate the importance of commissioning daylighting 

systems, with specific focus on the calibration and functional testing aspect of commissioning that occur 

at startup. While we recognize that there are other elements of commissioning, the steps surrounding 

startup of the system were, in our opinion, the ones needing the most improvement. We hoped to 

determine the typical level of success achieved in commissioning, as well as the amount of savings being 

missed (and conversely, the amount of savings captured). If our hypothesis was correct and systems were 

falling short of optimal savings by a significant margin, then building professionals may be able to adjust 

practices to ensure that those savings are captured in the future. Engineers designing systems could 

potentially change control specification practices. Commissioning guidelines should be broadened and 

strengthened, or simply included in projects where they are currently not applied to lighting. Contractors 

could be trained to better understand the steps necessary to execute a successful daylighting control 

system and identify factors that could affect this outcome. Efficiency programs in Minnesota and 

throughout the world could also use the results of the study to provide guidance when recommending 

daylighting controls and possibly add commissioning as a requirement for certain daylighting control 

measure incentives. 

Also, since we measure absolute performance of a sample of daylighting control systems in this project, 

we can subsequently estimate the absolute energy savings from effective daylighting design and control in 

Minnesota buildings (beyond just the component of savings from commissioning). Though there is 

already field research on the topic of daylighting control systems and their associated savings, much of it 

took place either several years ago when daylighting implementation was still in its infancy, or on the 

West Coast where the climate for daylighting is significantly different than in the Midwest. Though 

secondary and somewhat limited in scope, this piece of our study provides some additional data 

describing the absolute savings achievable in these systems. This will be of use for utilities, program 

managers, building designers, and building owners. For the benefit of Minnesota planners and program 

managers, these results will also be extrapolated to the state of Minnesota based on our limited data set. 

In addition to the primary and secondary objectives above, we completed additional comparisons with our 

measured data. We used life cycle cost analysis to compare both the daylighting controls and the 

commissioning of the controls to some typical cost parameters to help determine economic effectiveness. 

                                                      

7 Additionally, within the state government, automatic daylighting controls are required in most spaces in state buildings under 

the State of Minnesota Sustainable Building Guidelines. 
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Also, we compared the performance of the daylighting controls with mainstream building energy 

practices to determine our ability to predict this performance. Results are also extrapolated to estimate 

opportunities across the state of Minnesota. Finally, the qualitative lessons we learned through observing 

and working with these systems and their operators will be passed on to the broader buildings community.  
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LITERATURE REVIEW 

As discussed above, this work builds on a substantial amount of research already conducted in the area of 

automatic daylighting control.  

Rubinstein et al.
8
 analyzed three different algorithms for dimming electric lights in response to changing 

daylight availability. The three basic components of a photo-electrically controlled light system were 

identified as: a photosensor, a controller, and a dimming unit. The algorithms analyzed included integral 

reset (adjusts dimming such that measured illuminance is kept constant), open-loop proportional, and 

closed-loop proportional. The different algorithms were tested in scale models to determine their accuracy 

in controlling the illuminance level on the workplane to a set level. Different room shapes, window 

geometries, glass transmittance, and exterior shading devices were introduced. The closed-loop 

proportional control performed best. This was particularly true when it had a large field of view that did 

not include the window.  

Floyd and Parker
9
 performed a lighting retrofit on an elementary school cafeteria in Florida. The retrofit 

included an upgrade to lamp and ballast combinations, as well as installation of photosensor control. The 

building‟s lighting and HVAC energy usage, desktop illuminance, and exterior solar insolation were all 

monitored both before and after the retrofit. The daylight controls were calibrated in order to enhance 

their energy savings potential. Multiple issues arose during this process including the necessity of 

utilizing the shields on the photosensors, the need to locate photosensor sensitivity range (which was not 

readily available), and the requirement of trial and error to properly calibrate the lights due to differences 

between day and night performance. In the end, the retrofit showed a 16% energy savings attributable to 

the photosensor dimming of the lights. 

In another research project, Rubinstein et al.
10

 discussed the importance of commissioning and calibration 

of photosensors as well as offered advice for effectively performing these tasks. Commissioning was 

described as a process for ensuring the lighting system performs as the design intended (the authors note 

that the majority of systems are not commissioned at all) and calibration is defined as the adjustment of a 

sensor in order to get the desired output from a given input. Specific activities for both calibration and 

commissioning included: verifying photosensor placement and orientation, adjusting sensor and 

controller, adjusting the sensitivity and time delay, and setting upper and lower dimming limits. Three 

tips for calibrating a photosensor were also outlined: 1) place the sensor in the ceiling near the primary 

working area, 2) calibrate the sensor at a distance if possible, and 3) use a photometer at the workplane to 

provide feedback. 

Another paper by Galasiu et al.
11

 evaluated the performance of photosensor-controlled electric lighting 

under different configurations of office spaces. Four offices spaces in Ottawa, Canada were studied, each 

having a floor area of 150 ft
2
, height of 9.8 ft, high visible transmittance (Tvis) windows and low Tvis 

                                                      

8 “Improving the Performance of Photo-Electrically Controlled Lighting Systems,” Rubinstein, F., Ward, G., and Verderber, R., 

Presented at the Illuminating Engineering Society Annual Conference, Minneapolis, MN, August 7 – 11, 1988. 
9 “Field Commissioning of a Daylight-Dimming Lighting system,” Floyd, D. and Parker, D., Presented at the Right Light Tree, 

3rd European Conference on Energy Efficient Lighting, Newcastle upon Tyne, England, June 18 – 21, 1995. 
10 “On the Calibration and Commissioning of Lighting Controls,” Rubinstein, F., Avery, D., Jennings, J., and Blanc, S., 

Proceedings of the Right Light 4 Conference, Copenhagen, Denmark, November 19 – 21, 1997. 
11 “Field Performance of Daylight-Linked Lighting Controls,” Galasiu, A., Atif, M., and MacDonald, R., IES Conference 

Proceedings, Ottawa, Ontario, August 2001. 
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clerestory. Two of the offices had electronic dimming ballasts, while the other two had on/off controls. 

One of the “dimming” offices and one of the “on/off” offices had motorized blinds tied to the 

photosensors. Preliminary results showed that adding static blinds increased the electric lighting usage by 

40-45% for the “on/off” and 30-35% for the “dimming” system.  

Vaidya et. al
12

 summarized eight case studies of various projects that employed daylighting controls. Each 

project encountered issues and the authors analyzed the failure mechanism and how the users coped with 

them. A method of failure analysis was developed and four typical failure modes were identified. Finally, 

a template for resolving each kind of failure was developed. The case studies covered a wide range of 

space types and daylighting control systems. Typical operational problems included too many 

photosensors, poor or no calibration, lack of operator education/buy-in, dark interiors, and poorly 

matched components. These led to failures that were characterized into four modes: under-dimming, 

over-dimming, cycling, and lights being left on overnight. These issues could have been mitigated 

through proper controls calibration or commissioning, better coordination between design disciplines, and 

more checks of the contractor shop drawings.  

The Heschong Mahone Group
13

 conducted a very broad study of existing daylight-responsive lighting 

controls in sidelit buildings. The study covered 123 spaces in 49 different buildings mostly consisting of 

offices and classrooms. Measurements were taken for two weeks of controlled electric lighting current, 

uncontrolled electric lighting current, and the vertical illuminance entering the window. Through these 

measurements, the electric lighting savings for the actual, installed daylight control system was calculated 

by comparing the measured current to the total current during occupied periods. An eQUEST energy 

model of each space was then constructed with real-time weather to approximate the electric lighting 

savings for an idealized, perfectly operating daylight control system. The ratio of measured savings to 

predicted savings (called RSR), was then calculated for each space. A little more than half of the spaces 

had controls that were either not functioning or achieving no savings. Roughly half of those systems were 

intentionally disabled. It was common that all of the spaces in a building with daylight controls were 

disabled together, instead of only in problematic spaces.  

The daylighting control systems in the remaining spaces were achieving actual energy savings of roughly 

half of the predicted savings. This equated to a lighting energy savings of approximately 1.1 kWh/ft
2
-yr 

and a net peak demand reduction of approximately 0.6 W/ft
2
 of photosensor controlled area. Higher levels 

of energy savings were correlated with more uniform daylighting. These were often accomplished via 

windows on multiple facades, utilizing glazing with high visible transmittance, ensuring that the interior 

surfaces had high reflectances, and minimizing partition heights. Dimming controls had higher rates of 

functionality with only slightly less overall energy savings when compared to stepped systems. Further, 

the highest performing systems were in spaces with controlled zone depths no greater than two times the 

window head height. Older systems were actually found to save more energy than newer ones. The study 

concluded that both integrating the design of the architecture, lighting and controls as well as educating 

the building occupants were instrumental in the success of daylighting controls systems.  

                                                      

12 “What‟s Wrong with Daylighting? Where It Goes Wrong and How Users Respond to Failure,” Vaidya, P., McDougall, T., 

Steinbock, J., Douglas, J., and Eijadi, D., Proceedings of ACEEE Summer Study, Panel 7, August, 2004. 
13 “Sidelighting Photocontrols Field Study,” Heschong Mahone Group, Inc., Report #06-152, 2005 
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In addition to the field research in this area, consultants and researchers have also compiled some guiding 

documents for proper calibration and commissioning of daylighting systems. The International Energy 

Agency compiled a Calibration and Commissioning Guide for such systems, covering commissioning 

from pre-design through occupancy.
14

 Rubinstein et. al published guidance that included best practices, 

challenges in commissioning today‟s lighting controls, and advice to specifiers for identifying the most 

appropriate control systems.
15

 Lawrence Berkeley Laboratory has also compiled an online design guide 

for daylighting with an entire section on calibration with specific steps for calibrating several system 

types.
16

 

  

                                                      

14 Daylight Control Systems Calibration and Commissioning Guide, Butcher, M.; IEA Solar Heating and Cooling Programme; 

May 2006. 
15 “On the Calibration and Commissioning of Lighting Controls,” Rubinstein, F., Avery, D., Jennings, J., and Blanc, S., 

Proceedings of the Right Light 4 Conference, Copenhagen, Denmark, November 19 – 21, 1997.  
16 “Tips for Daylighting with Windows”, Lawrence Berkeley Laboratory: 

http://windows.lbl.gov/daylighting/designguide/designguide.html, accessed July 2012. 

http://windows.lbl.gov/daylighting/designguide/designguide.html


Commissioning for Optimal Savings from Daylight Controls February 19, 2013 

Energy Center of Wisconsin 11  

DATA COLLECTION  

The first step in collecting daylighting controls data involved creating a sample of buildings and spaces 

representative of the average Minnesota daylighting system. Our budget dictated a sample of 

approximately 20 spaces.  

Our general strategy was to collect data over three separate periods of time. In period 1, the control 

system would be monitored in its as-found state. In period 2, the daylighting part of the control system 

would be disabled, while the other lighting controls, such as occupancy sensors, switches, and time 

clocks, would remain functional such that the system would behave exactly as it would without 

daylighting controls. Prior to period 3, we would, with the help of knowledgeable contractors and 

manufacturer technicians, complete a basic recommissioning
17

 of the system.  

Various levels of commissioning had been completed initially to the spaces that we sampled, ranging 

from no commissioning to significant commissioning. Therefore, the results of period 1 would yield a 

measure of the typical performance of these systems with typical levels of startup calibration and 

functional testing. Conversely, the results of period 3 would yield a measure of the systems‟ near-optimal 

performance or at least as close to optimal as an ideal startup and functional testing process would have 

achieved. The difference between these two periods would also be a key focus as it would describe how 

much savings is being missed in systems that are not properly commissioned. Period 2 was primarily used 

as a benchmark for our daylighting energy savings calculations. Due to time constraints, these three 

periods of data collection were spread over a six-month period, and then normalized for daylight levels 

across each. 

THE SPACES 

We began locating daylit spaces for our study by reaching out to members of the architecture, 

engineering, education, utility, and research communities. We found a range of space types, owner types, 

and system types, but several similarities arose. A majority of the daylighting designs were sidelit with 

continuous dimming, and faced nearer to north or south than east or west.
18

 The space types identified 

were largely in three sectors: 55% office, 13% public assembly, and 23% education. 

With this information, and a statistically small number of spaces (20) in the budget, we quickly narrowed 

the field to include only buildings from two common daylighting applications: offices and public 

assembly. The public assembly spaces were specifically focused on libraries in our study, but seemed 

indicative of any public assembly space with long operating hours.
19

 Initial data collection for the project 

occurred in 43 of these spaces. We visited each of these spaces and recorded 32 parameters to describe 

the space, with a primary goal of selecting 20 typical spaces for in-depth study. We collected information 

on geometry, daylighting control parameters, lighting parameters, and architectural properties. Table 1 

                                                      

17
 We use the term recommissioned because all of these systems have operated for multiple years already, but note that it is 

possible that some were never initially commissioned. 
18 Interestingly, most of the spaces weren‟t due south or north, but rather within 20 degrees of north or south. 
19 This left „education‟ buildings as the only fundamental building type with substantial daylighting control penetration that is not 

considered here. It has been the subject of other studies, but more importantly is much more difficult to study than our subject 

building types because of the random usage and significant use of manual control and A/V lighting. 
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summarizes the spaces that were considered in this initial set of site visits, and approximates a 

characterization of typical daylit offices and public assembly spaces in Minnesota.
20

 

Table 1. Summary of space population considered for study (N=43). 

 

The spaces ultimately chosen for in-depth monitoring were from 10 different buildings, an average of two 

spaces per building. When multiple spaces were chosen in a particular building they were chosen to be 

significantly different in orientation, usage, or perceived level of commissioning in an attempt to achieve 

a representative sampling of spaces. These final 20 spaces are listed in Table 2, along with key 

daylighting characteristics including orientation, control method (dimming, etc.), and net window-to-wall 

ration (WWR). 

                                                      

20 In the end, the sample size was not big enough for three building types. Education was deemed problematic for inclusion in the 

study due to AV considerations, dynamic occupancy, and other interfering lighting controls (occupancy sensors). Additionally, 

the open study areas in the library were more similar to open office.  
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Table 2. The twenty spaces we monitored for the study. 

 

Note that the final four spaces are in Wisconsin rather than Minnesota. It was beneficial to study a few 

spaces in immediate proximity so we could conduct more frequent, detailed visits, especially early in 

experimental setup. The Wisconsin locations had a similar climate to the Minnesota sites. 

DATA ACQUISITION PROTOCOL 

In each space we installed continuous monitoring equipment to collect several data points, across all three 

periods discussed above. Period 1 of continuous data monitoring began on Friday, January 13
th
, 2012 at 

midnight, and monitoring concluded at the end of Period 3 on Tuesday, July 10
th
, 2012. The following 

points were continuously monitored with individual data loggers: 

 Current of controlled lighting circuit(s). A properly rated current transducer was placed on the 

photosensor-controlled circuit or circuits to measure the electric lighting‟s current. 

 Critical ‘Workplane’ illuminance. Illuminance at critical workplanes was measured indirectly 

via factory-calibrated photosensors placed in the space; the process for deriving workplace 

illuminance from these measurements is described in the section on Methodology and Analysis. 

 ‘Open loop’ illuminance. Low resolution photosensors were placed directly in front of the 

window or windows in the space to measure the relative amount of light entering the space 

through the window. 

 HVAC supply air temperature. The air temperature at the HVAC diffuser was measured using 

a temperature data logger. This was used to determine when the space was being heated and when 

it was being cooled. All the spaces studied used some type of air distribution for both heating and 

cooling. 

In addition to these continuous measurements, handheld equipment was also used to take spot 

measurements of the following:  

 Voltage and power factor. A power quality meter was used to measure the voltage and power 

factor of the controlled lighting circuit or circuits. Though spot measurements, this data was 
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collected multiple times to determine the effect of lighting control scenarios on voltage and power 

factor. 

 Window treatment position. At each of five visits, we recorded the position of the window 

treatments to determine what effect they may have on daylighting, and whether it was a static or 

changing parameter. 

 Workplane and current measurements for illuminance calibration. We also took multiple 

spot measurements of illuminance at the critical workplanes using a factory-calibrated handheld 

illuminance meter while current and photosensor readings were also taken. These coincident 

measurements were used to achieve continuous indirect measurement of critical workplane 

illuminance; the process for deriving workplace illuminance from these measurements is 

described in the section on Methodology and A. 

Finally, we collected data on occupant perception of the spaces and lighting systems. We first briefly 

interviewed each primary building contact, who was generally a facility manager or engineer. We then 

distributed a brief survey for the occupants who actually used the spaces we studied (see Appendix A.). 

The results of this survey alerted us to any unusual operational impacts or space constraints that might 

make our results less relevant. More importantly, we wanted to be sure this report included qualitative 

explanations for the quantitative results that went beyond our own suppositions. This is especially 

important when the key conclusions focused on the startup period, a time during which the facility 

management staff was heavily involved. 

The ultimate goal of all these measurements was to determine the energy savings of the daylighting 

controls. The measurements outlined above ultimately lead to this savings calculation. This calculation is 

summarized in detail in the next section. 
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METHODOLOGY AND ANALYSIS 

Two different savings metrics are considered key outcomes of this study: 1) the energy savings associated 

with having a daylighting control system and 2) the energy savings associated only with the act of fully 

commissioning that system. Each metric was calculated only for the area and the lights controlled by the 

daylighting control system. 

LIGHTING ENERGY USAGE AND SAVINGS 

The measured lighting energy usage, Wmeas, was calculated using the electrical current measurement, 

which was taken in 5-minute intervals, and the spot measurement of the circuit‟s voltage and power 

factor. This allowed us to calculate lighting energy usage for a given space for a given period: 

           ∑   

             

   

 (
    

          
) 

where V is the voltage of the electrical circuit, PF is the power factor of the electrical circuit, Ii is the 

sampled current at timestep i, and nmeasurements is the number of measurements in the particular period.  

To translate energy usage into energy savings, we also calculated the energy that would have been used 

by the lighting system with no controls present. The first step of this calculation was to determine, for 

each timestep, whether the electric lights were on or off. We accomplished this by first inferring a 

minimum, Imin, and maximum, Imax, current from the data. The minimum and maximum current 

corresponded to all of the electric lighting associated with the monitored, controlled circuit being at 

minimum or full power, respectively. If the measured current was at or below the minimum current, we 

considered the electric lights to be off. If the monitored current was greater than the minimum current, we 

assumed the lights were on. The next step was to determine what the current would have been had there 

been no photocontrol. In the absence of photocontrol the current (Ii,no pc) would be the minimum current 

during times the lights were off and the current would be the maximum current during times the lights 

were on: 

         {
            
            

 

The lighting energy usage for this case, Wno pc, is then found by substituting Ii,no pc into the W(I) function 

above. Lighting energy savings,        , for a given period of time is then simply the difference between 

Wmeas and Wno pc: 

                     

WORKPLANE ILLUMINANCE 

For a variety of reasons, we also indirectly measured the illuminance at the critical workplane. This 

measurement would allow us to better interpret energy performance, complete quality assurance checks 

on our results, and calculate an additional metric that we call controls effectiveness, which proved useful 

in evaluating commissioning potential. Due to potential occupant interference, light meters cannot be 
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placed directly at the workplane to measure illuminance as they would likely be tampered with or 

covered. Instead, the light meters were either placed on a cubicle wall with approximately the same view 

factor of the windows and lights as the desktop, or were placed on the ceiling and shielded from the 

window. In both cases, a calibration procedure was completed to allow us to correlate the sensor 

illuminance with workplane illuminance using a ratio of the total workplane illuminance, Ewp, and the 

sensor illuminance, Es. This ratio was observed to be a function of the electric light output in the space, 

especially in areas where the sensor had some direct input from the electric lights. The ratio was assumed, 

and limited daytime testing confirmed this, to not be as significant a function of daylight level. Literature 

has shown this to be true in other cases as well when sensors are properly shielded.
21

 In this case the ratio 

is a function of current: 

    
   

  
     ( ) 

where WSR is the workplane-to-sensor ratio. The specific function, fwsr(I), of each space was determined 

by taking current, workplane illuminance and sensor illuminance readings at the undimmed and fully-

dimmed lighting states, and a few intermediate points and then creating a mathematical fit. An example 

correlation is shown in Figure 1. 

Figure 1. Example of the correlations used to determine workplane-to-sensor ratio, for calculation of workplane 

illuminance. 

 

The hourly total workplane illuminance at each point in time was then calculated based on the measured 

current at that time, using the correlation for the given space.  

                                                      

21 “Improving the Performance of Photo-Electrically Controlled Lighting Systems,” Rubinstein, F., Ward, G., and Verderber, R., 

Presented at the Illuminating Engineering Society Annual Conference, Minneapolis, MN, August 7 – 11, 1988. WSR was shown 

to be relatively constant for well-shielded ceiling-mounted sensors placed near the back of the daylit zone (near the critical 

workplane). Those sensors placed on the ceiling in our study were fully-shielded on all sides; sensors placed on cubicle walls 

next to the workplane were bare (in fully cosine-corrected sensor heads). 
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               ( )     

To calculate our controls effectiveness metric, we also needed to calculate the daylight portion of the 

workplane illuminance. Ewp, is the sum of electric, Ewp,e, and daylight, Ewp,d, illuminance components: 

                

We began by finding the electric component of illuminance, Ewp,e. In a similar fashion to WSR, a 

correlation, fwp,e(I), was developed to define the relationship between Ewp and coincident current at several 

states of lighting power, while daylight levels remained constant. An example correlation is shown in 

Figure 2. 

Figure 2. An example of the correlation between workplane illuminance and current at constant levels of daylight. 

 

The daylight component of lighting in the space was constant across the correlation‟s currents. Since the 

y-intercept occurs when the electric lights are off, it is by definition the workplane illuminance from 

daylighting at that time. The rest of the curve therefore demonstrates the impact of electric lighting output 

on illuminance. The electric workplane illuminance Ewp,e may then be calculated from the current at any 

time by the correlation equation for each space. 

The hourly daylight component of workplane illuminance is then simply: 

                                  ( ) 

As an example, for the space used in Figure 2, Ewp,e is found by the following function: 
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It is useful to observe this calculation plotted out for an idealized system across an entire day. Figure 3 

shows the illuminance and current trends over a typical day for a space with an operable, dimming 

daylight control system. 

Figure 3. Idealized daily profile for different illuminances in a space with continuous dimming that is operating 

successfully. 

 

Note that there are two important states that combine to define a space‟s illuminance hourly profile; 

whether the sun is up and whether the controlled lighting is enabled either by occupants or timeclocks. 

For the space illustrated above, the lights are off (except for emergency fixtures) and the sun is down for 

the first several hours of the day. This leads to no daylight illuminance, low electric illuminance from 

emergency lighting and associated base load of current. The lights are switched on at 5:00 am, causing a 

step-change in electric illuminance and current. However, the sun is still down, so the daylight 

illuminance is still zero. At 6:00 am, the sun begins to rise. This leads to increasing daylight illuminance 

and decreasing electric illuminance and current. The illuminance from daylight peaks around noon. At 

this point, the electric illuminance and current are at their lowest. The opposite behavior is reflected in the 

evening, with decreasing daylight illuminance and increasing electric illuminance and current.  

It should be noted that during the sun down, lights-enabled state, the target design illuminance at the 

critical workplane may be determined. In the case above, the target illuminance, Et, is about 30 fc. To 

reiterate, this is at the critical workplane, so it is often a minimum lighting condition.  

As a counter example, the following figure shows the illuminance and current trends over a typical day 

for a space with an inoperable, dimming daylight control system. 
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Figure 4. Typical daily profile for different illuminances in a space with continuous dimming that is not 

operating successfully. 

  

As with the previous case, the electric lights remain off until 5:00 am. Again, the sun begins to rise at 

6:00 am, causing increasing daylight illuminance. However, the electric lights do not react to the 

increasing daylight levels. Instead they remain constant throughout the day and turn off during 

unoccupied hours in the evening.  

A more complete view of the performance of one of our monitored, typical systems is shown in Figure 5. 

This particular space had western and northern exposures and therefore shows an increase in daylight in 

the afternoon. Note that the daylight illuminance rises and falls in the first day as expected for this type of 

space, with interruptions that follow a pattern indicative of scattered clouds. The electric lighting current 

responds to balance out the falling daylight levels. The third day shows a different pattern, in which the 

morning is likely mostly cloudy, with a very clear afternoon. The middle day is a mix of the other two.  
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Figure 5. Illuminance analysis for a three day period for the Plymouth Library south space. 

 

In addition to these continuous dimming systems, we also studied one space with switching controls. This 

space was somewhat simpler to analyze. By placing a current switch on the manual light switch, we were 

able to determine whether the lights were manually switched off or on. If they were manually switched on 

but current was zero, then the daylight control was switching the lights off. If the lights were on, a 

constant illuminance was assumed from the electric lighting, essentially creating a constant correlation for 

the electric component of illuminance. The remaining component of illuminance was from daylight. 

CONTROLS EFFECTIVENESS 

As discussed in the introduction, the primary goal of our study was not to look at the architectural or 

lighting design impacts of daylighting, but rather to focus specifically on the commissioning of the 

control system applied to the lights and physical space as they were designed and constructed. Overall 

lighting system energy savings is not the best metric to help us reach conclusions about the 

commissioning of the control system, because savings is impacted heavily by the architectural (glazing 

size and properties, furniture, material finishes) and lighting design (lighting power density, zoning, 

layout) aspects of the space.  

As a result, we created a metric called „controls effectiveness,‟ here represented by the term : 

  
              

                        
 

The need to calculate effectiveness as opposed to just savings is best illustrated by considering an 

example space that we encountered in this study. This space had poor daylighting attributes with a 

daylighting zone that was too deep, dark finishes, and obstructing furniture. The savings from daylighting 

controls in such a space will generally be low. But the effectiveness may be quite high, indicating that the 
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controls are properly installed, started up, and calibrated. Put another way, if you were to use 

effectiveness to gauge the performance of your controls installation, startup, and commissioning 

personnel, they would not be as readily penalized by decisions made by the designers. 

Calculation of actual savings has already been established. Calculating ideal achievable savings is more 

complex. We must calculate how much energy would have been consumed if the space was perfectly 

photocontrolled such that the design target illuminance was always maintained at the critical workplane 

(or exceeded, when daylight alone was bright enough).In this case, an ideal electrical current, Iideal, was 

calculated such that the electric lights deliver exactly the target illuminance at the working plane. This 

was accomplished by substituting the target illuminance into the correlation for the electric component of 

illuminance and solving for current: 

        (      ) 

This adjustment was only applied to sampled data that occurred during times when the sun was up and the 

lights were on, and only when Iideal was lower than I. When the sun was down and the lights were on, the 

measured data was unaltered.  

This logic is illustrated in the following equation. 

            {

                     
                   
            

 

This analysis is possibly better understood visually. Figure 6 shows electric current measurement and 

analysis for one of the spaces over a typical week. In this figure, the actual current, adjusted current for no 

photocontrol, and adjusted current for ideal photocontrol are displayed. For the no photocontrol case (Ino 

pc), the value of current was adjusted to the maximum current whenever the lights were on and to zero 

current whenever the lights were off. For the ideal photocontrol case, the electric current (Iideal) varies 

throughout the day directly with light levels, occasionally reaching the minimum current of around three 

amps, which it will not go below. The actual current always falls somewhere between these extremes. As 

the actual current approaches the ideal current, the space‟s effectiveness approaches one. As the actual 

current approaches the no photocontrol current, the space‟s effectiveness approaches zero.  
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Figure 6. Electrical current for actual, ideal, and ‘no photocontrol’ cases for the Plymouth Library building for a 

typical week in March. 

 

Once an ideal current was known, the electrical energy for the case with ideal photocontrols, Wideal pc, was 

then found by:  

               ∑            

        

   

 (
    

          
) 

From these three cases, the photocontrol system‟s controls effectiveness, ε, was calculated by: 

  
            

                
 

The effectiveness ranges from one when the actual energy usage is equal to the ideal energy usage 

(perfect control), to zero when the actual energy usage is equal to the no photocontrol energy usage.  

EFFECTS ON HEATING AND COOLING ENERGY 

Though the predominant energy savings mechanism for automatic daylighting controls is in the direct 

savings from reduced lighting energy, there are other impacts as well. Namely, the reduced lighting load 

in the space impacts HVAC energy consumption. In cooling mode, savings results due to the HVAC 

system serving a smaller cooling load as a result of less heat put off by the lighting system in its dimmed 

state. Alternatively, in heating mode the system must work harder to make up for the lack of lighting load 

in the space when the lights are dimmed.  

In order to calculate the cooling and heating energy savings, supply air temperature measurements in each 

individual space were used to determine whether the HVAC system for the given space was in heating or 

cooling mode for a given sample time. First, a minimum heating supply air temperature, Theat, and a 
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maximum cooling supply air temperature, Tcool, were identified based on the thermostat setpoint in the 

space. If the sampled temperature, Ti, was above the Theat, the space was determined to be in heating 

mode. If the sampled temperature was below Tcool, the space was determined to be in cooling mode. If the 

sampled temperature was between the two temperatures, then the space was considered to be generally 

balanced or presumably only receiving ventilation. Note that the results of these temperatures were only 

utilized in the study for sample times where the lights were on, so this system of heating/cooling status 

with temperature does not need to account for setback temperatures. 

For example, in the space depicted in Figure 7 the temperature setpoint during occupied hours is 

approximately 72-76
o
F. This is actually observable because in cooling mode the temperature peaks at 

about 76
o
F, and in heating mode the temperature only dips as low as about 72

o
F. A safety „deadband‟ was 

added to the heating minimum, resulting in a Theat of 80
o
F. A similar „deadband‟ was added to the cooling 

maximum, resulting in a Tcool of 69
o
F. These account for transitions, and make our heating/cooling impact 

more conservative. When the supply air temperature was above the Theat the calculation assumes that this 

space was in heating mode. When the supply air temperature was below Tcool the calculation assumes that 

this space was in cooling mode. 

Figure 7. Supply air temperatures for the WECC S2 space. 

 

The cooling energy savings is a function of the lighting energy savings at each sample time: 

       ∑ {

         

       
         

          

        

   

 

where COPcool is the system coefficient of performance of the cooling plant. The heating energy penalty is 

also a function of the lighting energy savings.  
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       ∑ {
 
         

       
         

          

        

   

 

where COPheat is the system coefficient of performance of the heating plant. A multiplier coefficient, 

CHVAC, may then be developed that can be used to express the magnitude of the heating and cooling 

savings when compared to the lighting energy savings.  

        
             

       
 

where Wlight is the energy savings due solely to lighting, as discussed above. The total energy saved by 

the daylighting control system, W, is then: 

                 

UTILIZING MULTIPLE PERIODS OF DATA COLLECTION 

The energy savings and effectiveness of these three systems, as installed, are key metrics in determining 

the quality of the lighting controls, their installation, and the level of commissioning that they received 

prior to our involvement. In addition to the „as-installed‟ case that we observed in period 1 of our 

measurement, we also conducted an additional two periods of measurement. In period 2, we turned off the 

daylighting controls and completed the same measurement and calculations. Then prior to period 3, we 

completed a basic recommissioning of the system. The goal in period 3 was to monitor the system at a 

near-optimal level of control, or at least as optimal as an „ideal‟ half or full day of startup and functional 

testing would have been able to achieve. The operation of the lights across these three periods is 

demonstrated for one somewhat typical space in Figure 8. Note that in many cases the difference in 

performance between the three periods is quite stark, as they are in Figure 8.  
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Figure 8. Lighting current for the three periods of data collection at the Labs North space. Note the distinct 

difference in lighting operation between the three periods, and the decreased lighting energy usage in period 3 (after 

recommissioning) as opposed to period 1. 

 

Recommissioning Process 

Our recommissioning process between period 2 and period 3 was relatively simple to reflect a fairly low-

cost commissioning approach (which should occur at startup, not years later as in our study) that might be 

applicable to a wide range of buildings. We completed most of the tasks at the direction of one electrical 

engineer/designer with an elementary understanding of hands-on modification of controls. We employed 

manufacturers, including one technician in the field, specifically to help us understand the user interfaces 

on the more complex systems. This type of assistance is available from manufacturers for any team that is 

starting up a daylighting control system. Though a thorough commissioning process includes involvement 

early in the design process (such as review of floor plate zoning, coordinating trades, etc.) we focused our 

efforts and this research in general on the steps that take place at the end of design through occupancy. 

These are more minor changes that can be made at a control panel or in the zone itself with a building 

manager‟s or contractor‟s skill set, and no additional equipment need be installed.
22

 These tasks are 

summarized in Table 3 along with the design/construction stage at which they might normally take place 

if properly commissioned. 

  

                                                      

22 In fact, most of what was done could be done without an electrical contractor, though we would recommend that contractors, if 

not commissioning authorities, be the ones responsible for completing these tasks. 
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Table 3. The steps taken in our recommissioning process of each space, between period 2 and period 3. 

 

Normalization 

Our analysis required calculation of the key metrics of savings and effectiveness across all the sample 

times in each period. Comparison between these periods would yield significant additional insight. One 

simple comparison we used in this study was to compare period 1 to period 3, which represents the net 

effect of commissioning the daylighting controls. 

As in any multi-period energy study, we needed to normalize for weather effects between these periods. 

In this case, weather effects include any factors that impact light levels in the space, such as sun position 

throughout the day and year, cloud cover, and cloud thickness. Because the geometry and orientation of 

each space is different, the most thorough way to do this was to normalize the results based on observed 

daylight levels at the workplane according to a normalization coefficient, CPeriod: 

        (  
             

  
) 

        
   

         
 

Where EAvg,3 is the average daylight illuminance at the workplane in period 3, EAvg,1 is the average 

daylight illuminance at the workplane in period 1, W3 is the energy savings measured in period 3, and 

Wadj,3 is the energy savings for period 3, normalized for light levels. This value is used in all savings 

comparisons between period 1 and period 3 in the remainder of this report. Note that this direct 

comparison also compensates for internal changes, such as those to the blinds, furniture, or other items 

between period 1 and period 3. Because each period included several weeks of measurement, we assumed 

that occupancy effects, such as the coming and going of people, did not require additional normalization. 

Note that the metric of effectiveness automatically normalizes for occupancy. 

A final step in preparing the data for meaningful comparisons is to normalize the data to a typical annual 

period, so it is most useful to practitioners. The standard method for creating typical annual data is to 

normalize using a typical meteorological year (TMY)
23

 versus the actual 2012 site weather. TMY data is 

                                                      

23
 Our normalization methods, where applicable, followed the methods outlined in the International Performance Measurement 

and Verification Protocol. Use of TMY normalization is perhaps the most direct example of that. 
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readily available for all major cities. For actual 2012 measured weather data we purchased weather files 

for Minneapolis and Wisconsin.
24

 We examined several correlations between daylight at the workplane 

and climatic parameters in the TMY datasets and determined that the only significant general correlation 

was with the ratio of global horizontal radiation (GHI) to extraterrestrial radiation (ETR). This ratio 

accounts well for the impacts of weather (mainly cloud cover) on light levels at the earth‟s surface. It does 

not account for the impact of variation in the sun‟s altitude during the year, but our total measurement 

period was a half year, ending shortly after the summer solstice, and therefore was conducted across the 

full range of the sun‟s altitude variation. CTMY is the resulting ratio used to compare TMY with measured 

weather:  

     
 
      
       

 

       
       

     

where Csav is the correlation coefficient between changes in the value of GHI/ETR and changes in energy 

savings. After performing this calculation, we found the total value of CTMY to be 1.03, which means 

weather normalization didn‟t have a major impact. 

Finally, we use CTMY, CPeriod, and a factor to account for the different durations of each period, to 

extrapolate our period measurements to a TMY condition. First the extrapolation of period 1 represents 

the energy savings,            , for each system as it was before we made any changes: 

            (           )       
   

       
 

where Ndays,1 is the number of days in measurement period 1. The extrapolation of period 3 is similar, and 

represents the savings for each system after a significant commissioning effort: 

        
   

           
      

   

       
 

We conducted the same calculations for savings as percentage of total energy usage and savings 

normalized by peak controlled lighting power, expressed as kWh per kW. 

DATA QUALITY CONTROL 

Data accuracy is of primary importance to ensure that results are useful to the design and research 

community, replicable by other researchers, and admissible for utility program design, calculations, and 

evaluation. This level of accuracy begins with quality measurements; in this case measurement tools were 

calibrated as discussed in the Methodology and Analysis section. However other considerations were also 

made. 

                                                      

24
 Weather files were purchased from Weather Analytics (http://weatheranalytics.com/); these are quality controlled hourly 

weather files from the actual hours that we conducted the study. We chose the weather from the nearest airport to represent the 

locations. 

http://weatheranalytics.com/
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Much of our work relies primarily and directly on measuring the current of the lighting systems studied. 

Raw energy savings in all its forms, for example, is based almost solely on this measurement. 

Additionally, the extrapolation of the energy savings, the effectiveness metric, and the cross-period 

comparison of savings also depend on our illuminance measurements. We did not have any significant 

inaccuracies in the measurement of illumination itself, but the various uses of those light measurements 

were subject to more potential uncertainty. We attempted to mitigate this uncertainty in several ways. 

First, both the critical workplane illuminance measurements and determination of design illuminance 

level were subject to potential errors in 1) the correlation between measurement point and workplane and 

in 2) choice of critical workplane position. Our primary mitigation strategy here was to measure multiple 

points, from 2-3 points in each space, and use a combination of averaging of these points with elimination 

of outliers. 

In addition, our measurement of the daylight component of illuminance relied on a correlation of the 

electric lighting component of illuminance, which was subject to measurement error across several 

measurement points. The potential error in this limited data was mitigated by observing the value of the 

illuminance due to daylight at the end and/or the beginning of the day. At the end of a day, for example, 

the value of daylight illuminance should approach zero as the sun sets, even while the lights are on and 

modulating their power in response. This observation was checked across several days for each space, an 

example of which was illustrated in Figure 5. 

The light levels measured by the photosensors pointed directly at the windows were originally intended 

for use as a backup to our ability to measure daylight at the workplane. As we were fortunate to be able to 

use our workplane measurements, we did not use open loop light levels directly in our primary 

calculation. However, they provided yet another benchmark for our light level measurement. We did not 

feel it was worth trying to create any type of correlation between open loop and workplane illuminances, 

but we were still able to use these illuminance measurements to check 1) that our daylight light levels 

changed throughout the day and season as they should and 2) as a check of our comparison and 

extrapolation factors between period 1, period 3, and TMY values. 

Similarly, our period 2 measurements were in place as a potential point of comparison for savings 

calculations, in the event that the „no photocontrol‟ case could not be translated accurately from the 

period 1 and period 3 current measurements. This could have occurred due to occupancy sensors, an 

inability to accurately define luminaire zoning, or other lighting controls that interfered with the 

photocontrols. Because this translation proceeded smoothly, the period 2 measurements were used 

primarily as another quality control tool. Using period 2 measured data, we were able to check that our 

methodology resulted in a controls effectiveness at or near zero for each space. We were also able to 

check that our filtering of both occupancy sensors and manual switching was adequate, and that the 

daylight illuminance calculation, with its multiple correlations, still yielded reasonable results across 

periods. (This was realized through period-to-period comparison of illuminance levels and sunrise 

daylight levels.) 

EXTRAPOLATION METHODOLOGY 

One of the other objectives of the study was to extrapolate our energy savings results from our sampled 

spaces to the entire state of Minnesota. Our extrapolation relies on the average energy savings potential 
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demonstrated by the systems in our study. We make three separate extrapolations here: the amount of 

energy to be saved by implementing daylighting controls in existing buildings (Wretrofit below) with         

1) ideal startup  and 2) with typical startup, and 3) the amount of energy to be saved by recommissioning 

the daylighting control systems that currently exist in Minnesota (WreCx below). Note that an additional 

area of daylighting control savings is that which could be applied to new construction, but we do not 

attempt to extrapolate our results to that population here. We use a variety of sources to determine the 

total amount of lighting energy in Minnesota that is applicable to these categories.  

Our ultimate extrapolations begin with an estimation of the total technical potential, W,potential, of each 

measure. These values represent the total potential for completing these measures in all commercial 

buildings in Minnesota, regardless of economics or resources: 

                                                   (      )            

                                                                   
             

      
(       )

 
 

In addition to the total technical potential, we‟ve also estimated the annually achievable potential 

(subscript annual) of each measure. These values represent what may be actually achievable for building 

and efficiency professionals to save in a given year: 

                                                         

                                      

We used a range of sources for the inputs to these equations: 

Psavings is the median percentage savings demonstrated by automatic daylighting controls in this research, 

post-commissioning. See the R section for more details and values chosen. 

 

Psavings,reCx is the median percentage savings demonstrated by commissioning of the automatic daylighting 

controls in this research, defined as the differential between percentage savings before and after 

commissioning. See Utilizing More Daylight in Minnesota Buildings for more details and values chosen. 

 

Faccess is the fraction of lit commercial building floor area that has a high enough daylight factor to benefit 

from daylighting controls. Results of three different sources were considered and the median of 31% was 

used. The sources include a metastudy on national lighting control potential
25

, a 2012 study of daylighting 

retrofit potential in California
26

, and the daylit area in the commercial building reference models used to 

quantify national building energy codes.
27

 

 

Faccess,reCx is the fraction of space that is daylit in the population of CBECS buildings that is designated to 

have some type of daylighting controls. As we anecdotally believe the CBECS results to have 

                                                      

25 “Quantifying National Energy Savings Potential of Lighting Controls in Commercial Buildings”, Williams, A.; Atkinson, B.; 

Garbesi, K.; Rubinstein, F., Proceedings of 2012 ACEEE Summer Study, August 2012. 
26 “Daylighting in Existing Office Buildings: An Untapped Retrofit Resource”, Saxena, M.; Heschong, L.; Perry, T.; Davis, D.; 

Scruton, C., Proceedings of 2012 ACEEE Summer Study, August 2012. 
27 “US Department of Energy Commercial Reference Building Models of the National Building Stock”, National Renewable 

Energy Laboratory, Technical Report TP-5500-46861, February 2011. 



Commissioning for Optimal Savings from Daylight Controls February 19, 2013 

Energy Center of Wisconsin 30  

overestimated the amount of total daylit buildings (likely including buildings that only have some very 

minor portion of the building on daylighting controls), we used the lowest cited number for daylight 

controlled fraction in the three studies footnoted here. This value was 17%. 

Fint. lighting is the fraction of commercial building energy usage in Minnesota that is attributable to interior 

lighting. Based on the results of CBECS
28

 2003 data for the region, this value is assumed to be 32%. 

Fsat is the saturation, or the fraction of technically available daylit space that already has automatic 

daylighting controls installed. A conservative estimate based on CBECS yielded 3% for Fsat. 

Wcomm.,MN is the energy used by commercial buildings in Minnesota. This value is simply taken from the 

US Energy Information Administration electricity sales data for the commercial sector in Minnesota; for 

the most recent year it is approximately 20,530,000 MWh. 

AreaMN is the floor area of commercial buildings in Minnesota. This value is estimated at 1,250 million ft
2
 

based on the commercial floor area in the West North Central Region (per CBECS) prorated by the ratio 

between commercial electricity usage in Minnesota, WComm,MN, and the commercial electricity usage in the 

West North Central Region with corrections for scope of the two separate surveys.  

AreaMN,daylit is the area of buildings in Minnesota that include some type of daylighting control. This value 

is based on CBECS estimates of share of buildings in the region that include daylighting control.  

rexp is the rate of growth in the market for daylighting controls; this is required because the values of 

AreaMN,daylit are based on 2003 values, before most of the systems that we have observed in Minnesota 

existed. This value is not well known, so sensitivities are used to determine the result at different values 

of rexp. 

Fannual is the fraction of overall lighting technical potential that can be saved annually, i.e. what portion of 

the technical potential for lighting retrofits can be retrofitted each year based on existing lighting 

programs and methods. This value is approximately 6%, and is based on the 2010 Minnesota CARD 

Energy Efficiency Potential Study
29

. This assumes that daylight recommissioning could potentially follow 

a similar technical-to-annual-achievable ratio as general lighting retrofit. 

Flight ctrl is the ratio of annual achievable controls retrofit to annual achievable lighting retrofit. This factor 

is included to recognize that the majority of lighting retrofits cannot feasibly include automatic 

daylighting control. Substantial program data is not yet available to accurately quantify Flight ctrl, so 

sensitivities were conducted using a range of values. 

The calculations and results completed using these equations can be found in the Utilizing More Daylight 

in Minnesota Buildings section. 

                                                      

28 Commercial Building Energy Consumption Survey, http://www.eia.gov/consumption/commercial/ 
29 “Minnesota Statewide Electricity Efficiency Potential Study DSM Potentials Report”, Navigant Consulting, Submitted to 

Minnesota Office of Energy Security, April 2010. 
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MODELING METHODOLOGY 

In addition to monitoring these spaces we also created energy models of 18 of the spaces in DOE-2, using 

eQUEST as a front end. The primary purpose of the modeling was to determine the ability to predict 

performance of these systems. Modeling is often used in energy efficiency programs in place of field 

measurement for predicting energy savings because it costs less. Therefore, if our models were accurate 

predictors of daylighting energy savings, program staff could more readily utilize modeling, making 

programs more cost-effective. The modeling also served as an additional quality control check on our 

energy savings methodology as described in previous sections. If the modeling and measured energy 

savings were in relative agreement then we could have greater confidence in our general approach. Our 

approach is summarized below.
30

  

Each model encompassed the entire building, not just the studied space(s), and included information 

about the building‟s size and orientation, wall and roof construction, window to wall ratio and window 

properties, zoning pattern and space specific loading, operating schedule, and HVAC system. We 

obtained the inputs for these building-wide parameters either from drawings or site measurements; some 

parameters were based on standard modeling practice, generally for systems other than lighting. Figure 9 

illustrates the model of the Plymouth Library. 

Figure 9. DOE-2 model of the Plymouth Library. The south reading area that was included in this study is circled 

(named Plymouth Library S1 in this report). 

 

We included more detail in specifying the monitored spaces within the model. The geometry of each 

space was specified based on drawings and measurements taken on site. The window‟s exact size and 

location, as well as any exterior shading devices, were specified. The window‟s visible light 

transmittance,     , was determined from site measurements by: 

     
         
         

 

                                                      

30 Our modeling methodology generally followed the one used by HMG in “Sidelighting Photocontrols Field Study,” Heschong 

Mahone Group, Inc., Report #06-152, 2005. Our method was varied somewhat from this, to fit the goals of our study.  
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where Einterior and Eexterior were measured illuminance levels taken on a handheld light meter immediately 

interior and exterior of the window, respectively. The interior surface (ceiling, floor, walls, furniture) 

reflectances were determined with site measurement using a simple Reflectance Sample Card.
31

 If interior 

shades were used in the space, a window shading schedule was created and given a visible light 

transmittance of 0.2. This value is essentially an average of the recommended visible transmittances for 

shades.
 32

  A maximum glare coefficient of 22 was set in each space, as recommended for general office 

activity. This coefficient, when coupled with the window shading schedule, initiated DOE-2‟s blind 

control algorithm, approximating an occupant of the space operating the interior shades to prevent direct 

sunlight from causing glare.  

Only the spaces with dimming controls were modeled, so the control strategy for each of the modeled 

spaces was set to dimming. Additionally, we only considered the photo-controlled portion of the lighting 

in each space in the model, allowing for more straightforward calculation of savings percentage and kWh 

saved per controlled kW. A lighting schedule was created with beginning and ending times taken from the 

measured current data. Figure 10 illustrates an idealized current profile and its corresponding lighting 

schedule.  

Figure 10. Idealized current profile and corresponding lighting schedule for a typical day. 

 

Note that we set the lighting schedule to one, or full lighting power, during periods of occupancy. The 

first step in zeroing out the uncontrolled portion of the circuit‟s current was to set the lighting schedule to 

zero, or no lighting power, during unoccupied periods. The second step was to adjust the maximum 

current to be just that of the controlled current. The maximum controlled lighting power, Pctrl,max, was 

calculated based on the various currents outlined in Figure 10 by: 

                                                      

31 “Lighting Guide 11: Surface Reflectance and Color”, Loe, D., Society of Light and Lighting and the National Physical 

Laboratory, London, 2001. 
32 "Determination of the Effectiveness of Window Shading Materials on the Reduction of Solar Radiation Heat Gain" R.C. 

Jordan and J.L. Threlkeld, ASHRAE Transactions, Volume 65, 1959. 
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               (                   )  (
    

      
) 

Where Ioccup,max is the maximum current during occupied times and Iunoccup is the current during unoccupied 

times. Note that this assumes that the uncontrolled lighting on a given circuit requires a constant power 

for every hour of the year. The calculated controlled lighting power was then entered explicitly into the 

appropriate space with the corresponding lighting schedule. The controlled power fraction in the space 

was set to one since the specified lighting power only pertained to the controlled portion. The minimum 

power fraction, fmin, was calculated via: 

     
                   
                   

 

Where Ioccup,min is the minimum current during occupied times. Finally, we set the primary photosensor 

location in the model to correspond to the location of the actual photosensor in the space. A secondary 

photosensor location was created and located to correspond with our illuminance data logger. This 

secondary photosensor did not control any lighting power (fmin ~ 0), but did predict illuminance at the 

same location as our measurements, allowing for an hourly comparison which is described subsequently. 

Finally, target illuminance was set to correspond to that discussed in the Workplane Illuminance section.  

Table 4 summarizes the architectural inputs used for each of the modeled spaces, along with their 

respective averages. 

Table 4. Summary of architectural inputs for each modeled space. 
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Note the high average wall reflectance (69%) and average window visible transmittance (52%) of these 

spaces. Table 5 summarizes the lighting inputs used for each of the modeled spaces, along with their 

respective averages. 

Table 5. Summary of lighting inputs for each modeled space. 

 

Note the average minimum power fraction (13%) and average target illuminance (28 fc).  

The final model input was the obstruction factor (referred to as the furniture factor in Heschong Mahone 

Group‟s work.
33

 This factor is defined as the percentage reduction of illuminance at a given location due 

to obstructions internal to the space, such as partitions or shelves. In their work, HMG determined this 

factor via on-site spot measurements. For our purposes, we used the measured illuminance values 

themselves to determine a single obstruction factor that took into account the impact on daylight across 

our period of study. Although more work is certainly needed, our hope was to begin to develop typical 

obstruction factors that can be used by modelers on their own projects. We ran each model (with real-time 

weather) to produce an hourly illuminance profile at the secondary photosensor corresponding to the 

critical workplane illuminance monitored in each space. We plotted the hourly modeled illuminance 

versus our measured illuminance levels. Figure 11 illustrates the modeled versus measured illuminance 

during period 3 for the Freeman N3 space.  

                                                      

33 “Sidelighting Photocontrols Field Study,” Heschong Mahone Group, Inc., Report #06-152, 2005. 
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Figure 11. Plot of hourly modeled versus measured illuminance during period 3 for the Freeman N3 space, without 

obstruction factor. 

 

Note that the model originally predicted illuminance values consistently higher than the measured 

illuminance values. This is at least partially due to the omission of internal obstructions in the model that 

existed in the actual space. We then created a linear fit of this relationship and found the slope, mof, (3.3 

for Freeman N3) of this correlation. The obstruction factor, fo, for a given space was calculated as the 

inverse of this slope.  

   
 

   
 

Figure 12 illustrates the modeled versus measured illuminance values once the obstruction factor had 

been entered into the Freeman N3 model. 
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Figure 12. Plot of hourly modeled versus measured illuminance during Period 3 for the Freeman N3 space after the 

obstruction factor has been applied. 

 

Note the substantially improved agreement between modeled and measured illuminance levels. Table 6 

summarizes the obstruction factors, and corresponding furniture, found using this method for each of the 

modeled spaces.  

Table 6. Summary of obstruction factors for each modeled space. 
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A correlation appears to exist between obstruction factor and partition height, with higher partitions 

resulting in lower obstruction factors and therefore lower daylight levels. However, this correlation 

requires more detailed study. 

Note that if the obstruction factor was found to be greater than one, then the obstruction factor was set to 

its default value of one. This assumes that an obstruction factor could never cause higher illuminance 

levels in a space, only lower levels. Once we entered the obstruction factor into the model, the model 

inputs were complete.  

In order to compare the model‟s results to our measured results, we ran the models again with TMY 

weather, first without photosensor control and then with photosensor control. In much the same manner as 

with the measured results, the energy savings could be calculated from these two modeling runs by: 

                               

Where         is the modeled energy savings due to photocontrol for only the lighting in each space, 

Wmodel,no pc is the modeled energy usage of the lighting without photocontrol, and Wmodel,pc is the modeled 

energy usage of the lighting with photocontrol. Since the model‟s photosensor control algorithm assumed 

ideal control, we needed an additional step in order to directly compare the idealized modeling results to 

our measured annual TMY savings. This step involved using the effectiveness of the given space‟s 

control system by: 

                    

Where           is the modeled energy savings modified by system effectiveness. 

Note that we chose DOE-2 for our modeling effort because it is a common, proven tool among energy 

modelers and is used often within energy efficiency programs for predicting savings. It produces hourly 

illuminance and energy calculations based on site-specific weather using well accepted methodologies. 

However, like any model, DOE-2 also has its inherent weaknesses. It uses the split-flux method instead of 

the more rigorous ray-tracing approach to predict illuminance levels. The split-flux method has the 

benefit of simulation speed, but is less accurate than its more sophisticated alternative. DOE-2 also 

attempts to predict the occupant behavior associated with adjusting interior blinds. However, its approach 

is limited; more recent attempts by Reinhart
34

 have developed more sophisticated blind controls 

algorithms. Finally, the split-flux method does not account explicitly for interior object‟s effects on the 

light distribution. We attempted to correct for this by calibrating our model to measured illuminance 

levels with an obstruction factor. Our method is useful if measured illuminance levels exist. If they do not 

exist, a spot measurement of this obstruction factor can be made in the space using a handheld light meter. 

Alternatively, “typical” obstruction factors could be used. Establishing such typical factors is an 

opportunity for additional development in this field. We do provide just a few data points towards this 

end.  

                                                      

34 Lightswitch-2002: a model for manual and automated control of electric lighting and blinds C. Reinhart. A version of this 

document is published in Solar Energy, v. 77, no. 1, 2004, pp. 15-28 

http://www.iea-shc.org/publications/downloads/task31-Lightswitch-2002.pdf
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RESULTS 

DAYLIGHTING CONTROL ENERGY SAVINGS 

The primary objective of this research is demonstration of the impact of proper commissioning, focusing 

on calibration and functional testing, on the performance of automatic daylighting controls. In the 

previous sections, we discussed development of several metrics to demonstrate this impact, including 

energy savings, controls effectiveness, and the comparison of these values across the as-found (period 1) 

and fully commissioned (period 3) time frames. We now present the results of those calculations, 

beginning first with the as-found savings, then effectiveness, and then comparisons from as-found to post-

commissioning.  

Typical Energy Savings 

Data was initially collected to determine the performance of each system as-found. The primary metrics 

used to describe performance are electricity savings per kW of controlled lighting in units of kWh/kW 

and the percentage of energy saved for the controlled lighting. These primary metrics are summarized in 

Table 7 by space, with median values for the study highlighted at the bottom. Results are shown for 

lighting only on the left, and lighting with associated HVAC savings on the right. 
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Table 7. Primary metrics describing the performance of the daylighting control systems studied, in the ‘as-found’ 

condition. Note that average values are higher than medians because of two highly performing library systems. 

 

This initial data shows that the median automatic daylighting control system in a population represented 

by our sample would save approximately 809 kWh for every kW of lighting that is controlled by the 

system, or about 20%
35

 of the controlled lighting energy. This number increases to 915 kWh per kW 

(23%) if we include the savings in associated HVAC energy.
36

 If we look at the units of kWh/kW, this 

essentially simplifies to the number of equivalent hours in a year for which the lights would be fully off. 

                                                      

35 With a range of performances selected, with some systems working and others not, the standard deviation of these values based 

on our sample size is 1250 kWh and 27%.  
36 It is useful to benchmark the results of this study against the most similar major study completed, which was done 

approximately seven years ago in California (HMG, 2005). They found that the average kWh per kW controlled was 

approximately 400 kWh for all systems studied, and 700 kWh for systems that were deemed „functioning.‟ The results that we 

found agree with the upper end of this range. It is difficult to know why our results skew towards this upper end. It is possible 

that in the seven years since that study, system performance has improved, or that as such systems are (or seem based on our 

survey) less common in Minnesota than California and that factor influences the type and performance of systems. It is also 

possible that the sample itself skews somewhat towards higher performing systems, though no intended bias was used to select 

performing systems. 
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If a typical commercial space operates for 3,500 hours per year, it seems reasonable that a typical 

daylighting control system could keep the lights at or near off for a quarter of that time (or half off for 

half of the time, etc.). On a per square foot basis, for a typical commercial space lit with 1 W/ft
2
, this 

savings equates to 0.9 kWh/ft
2
. 

Savings ranged from as high as 74% or 2,463 kWh/kW for controlled lighting (Central Library N A) in a 

fully glazed north façade, to as low as zero. In fact, four of the twenty systems that we studied were 

essentially not saving energy as they were found. Beyond the non-performers, there was a somewhat 

uniform distribution of performance levels ranging between 3% and 74% savings (see Figure 13). 

Figure 13. Distribution of lighting savings (by %) for the sample of spaces, prior to our recommissioning step. 

 

The ability of a daylighting control system to save energy is impacted by many different space attributes: 

orientation, glazing, furniture layout, control design, control operation, interior finishes, and more. The 

primary objective of this effort was to study the controls themselves. To that end we created the metric of 

controls effectiveness (see Methodology and A section) which specifically looks at how well the controls 

are designed and operated to save energy based on available daylight.  

Simply put, controls effectiveness is the ratio of actual performance to performance with ideal or perfect 

controls. Therefore it is normalized for the performance of attributes like glazing and interior design, 

which are outside the realm of controls. In period 1, we found the average controls effectiveness to be 

51% (with a median of 66%). The range of effectiveness values can be seen clearly in Figure 14. 
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 Figure 14. Distribution of controls effectiveness found in period 1 of data collection. 

 

It is also helpful to show the strength of the correlation between controls effectiveness and energy 

savings. As Figure 15 demonstrates, the effectiveness of these controls appears to be a primary driver of 

their overall performance―regardless of how much effort was put into glazing design, lighting layout, 

orientation, and other design parameters. In fact, of the poorer performing systems, or those with less than 

20% (controlled) lighting savings, only one in ten had controls that were operating at a high level of 

effectiveness. This means that other causes outside of the control operation were responsible for poor 

performance in only one of the ten poor performers,. If controls are designed, installed, and operated so 

that they are operating reasonably effectively, savings jump to between 22-74%. 

  



Commissioning for Optimal Savings from Daylight Controls February 19, 2013 

Energy Center of Wisconsin 42  

Figure 15. Percentage savings as a function of controls effectiveness (p<0.001 for this relationship). 

 

Savings Due to Commissioning 

Our initial surveys of the building designs and products selected for these buildings revealed that there 

was generally significant attention paid to daylighting strategy in design, and that the daylighting controls 

selected were of high quality. Our hypothesis was that though a quality control system is part of the 

design, it is not always given enough attention throughout the entirety of the design and construction 

process. Put another way, it is not fully executed to perform well―primarily through documentation, 

installation, and startup stages of the project. This was demonstrated by some of the low effectiveness 

scores we observed in period 1.  

One solution to this inadequate execution would be a commissioning process focused on execution of 

lighting control. Though often recommended and even included in the specification, it is unfortunately not 

often completed, or at least was not based on our interviews. To demonstrate the positive impact of 

commissioning and subsequent controls operation on performance of a system, we included a 

recommissioning step between periods of data collection. Technically what we completed on each system 

would be termed recommissioning because we commissioned systems after substantial use, but without 

any substantial change in the building. Prior to period 3 of data collection, we spent a few hours in each 

space completing basic startup tasks, such as calibration and functional testing, which might be part of an 

initial commissioning process. These tasks included items such as tuning, shielding, redirecting sensors, 

connecting disconnected systems, changing timing settings, and other adjustments that could be done 

fairly quickly without any additional equipment installation or even any significant work by an electrical 

contractor (see the Recommissioning Process section for details). Figure 16 demonstrates the change in 

savings from before recommissioning to after (represented by period 1 and period 3, respectively). 
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Figure 16. Energy savings before and after commissioning. Note that the ‘after’ case is represented by the sum of the 

two bar colors, and not only the red. In one space, WPPI W2, we did find that the commissioning effort resulted in 

negative savings (additional energy used) as the original setpoints resulted in lighting levels that were, at times, below 

the design condition.  

 
As Figure 16 demonstrates, the recommissioning effort resulted in significant increases in performance in 

most spaces. The tabular results for the performance of these systems after commissioning is given in 

Table 8, with median values for the study highlighted at the bottom. Results are shown for lighting only 

on the left, and lighting with associated HVAC savings on the right. Note that in cases with significant 

HVAC savings, total savings can potentially be greater than 100% of the controlled lighting energy. 
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Table 8. Primary metrics describing the performance of the daylighting control systems studied, after the 

commissioning step.  

 

With commissioning the median savings increase to approximately 1,762 kWh for every kW of lighting 

that is controlled by the system, or about 55% of the controlled lighting energy.
37

 These savings numbers 

can be as high as 4,220 kWh per kW and 92% savings (again, including HVAC energy). More 

importantly, the minimum savings has increased from 0% prior to commissioning, to 14% after 

commissioning. Savings have increased substantially across all key metrics with the commissioning 

process. Median savings increases to approximately 1,976 kWh per kW, or 63% savings, if we include the 

savings in HVAC energy. For an average space at 1.0 W/ft
2
, this equates to 2.0 kWh/ft

2
 controlled. 

Figure 17 compares the controls effectiveness after commissioning to the effectiveness prior to 

commissioning. This demonstrates that our commissioning process met its goal of improving controls 

effectiveness, bringing most systems more than halfway closer to being 100% effective.  

                                                      

37 Though these savings values have nearly doubled from the pre-commissioning case, the absolute standard deviation remains 

similar at 1,260 kWh and 25%; there is considerably less (relative) variation in results when systems are all commissioned. 
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Figure 17. Controls effectiveness, after commissioning versus before commissioning. In general, the effectiveness was 

increased substantially through commissioning. 

 

It is useful to quantify these specific improvements in terms of savings. Figure 18 shows a typical 

breakdown based on the average percent savings results from Table 8, with an increase for 

commissioning averaging 20% of total lighting energy, which is an 87% improvement over the savings 

from the pre-commissioning case. This increased savings from commissioning equates to an average of 

810 additional kWh per kW of installed lighting.  

The third key metric, controls effectiveness, increased (on average) from 50% to over 75%, or a 50% 

improvement. This additional savings results solely from improving controls operation, not from any 

change to glazing design, blinds operation, furniture selection, or minimum dimming power of the 

ballasts―all generally more difficult or expensive items to modify.  
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Figure 18. Typical attribution of distribution of lighting energy in a daylit system, between energy that cannot be 

saved by daylighting controls, energy that is typically saved, and additional energy that could be saved if all control 

systems were fully executed and commissioned.  

 

The distribution of potential for improvement in energy savings is shown in Figure 19. Plotting this 

improvement data as a function of effectiveness prior to commissioning also demonstrates that there is 

room for additional savings from commissioning in most systems, even those for which the controls were 

reasonably effective with a typical installation. 

Figure 19. Increase in savings for each system from before to after the recommissioning step. The data is plotted as a 

function of the initial savings of each control system.  
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Recommissioning demonstrates a potential measure that could be implemented not just by building 

owners, but through energy efficiency programs. With a significant number of automatic daylighting 

controls systems already in place throughout the country, there is energy to be saved in finding these 

buildings and completing a fairly simple, brief recommissioning effort (see Utilizing More Daylight in 

Minnesota Buildings for actual extrapolation to the larger population). In our experience, making the 

adjustments required to bring each zone near optimal only took about 30 minutes once we had a few days 

of electrical current measurement and had located the controls equipment.
38

  

Owners of newly constructed buildings, however, do not need to wait for recommissioning of their 

spaces. An owner and their design and operating teams could make initial commissioning of the 

daylighting controls part of the scope of design services when the building is constructed. Leading design 

professionals, daylighting researchers, and even some energy standards have been suggesting this for 

some time, and offering steps to do so.
39

 This work shows that implementation of this practice in this 

region is not yet widespread enough. Initial commissioning can be more cost effective than having a third 

party coming to the building later and needing to locate and decipher circuits and user interfaces before 

even beginning the calibration and testing process.  

Our interviews with building staff suggest that initial commissioning processes can have a similar impact 

on performance as our recommissioning effort did (see Figure 20).  

Figure 20. Average controls effectiveness (from period 1, as-found) of each system for the various levels of 

commissioning undertaken on the project during construction and startup. Sample sizes are small (N ranges from 2 

to 6) so the values should not be used universally, but the overall trend is noteworthy.  

 

                                                      

38 Assumes some assistance from manufacturer in navigating controls interface, or prior knowledge of the interface. 
39 Seattle City Light, California Title 24, and Lawrence Berkeley National Laboratory (LBNL, 2012) are all examples of 

providers or enforcers of specific guidance and requirements in this area. 
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A similarly qualitative trend was found for training of building managers: the more training given to those 

managing the system, the higher the controls effectiveness for our sample.  

We also looked at controls performance based on system age. As seen in Figure 21, controls operation 

was not a strong function of age. This suggests that performance can persist for many years if initial 

commissioning is done correctly and the system is made to perform optimally. (The same conclusion was 

reached on an even broader sample in research throughout California).
40

 

Figure 21. Controls effectiveness (from period 1, as-found) of each system as a function of the age of the system. 

There is no clear relationship between performance and age (p=0.12 for this relationship). 

 

Heating and Cooling Effects of Daylighting Control 

So far we have presented results with savings either 1) for lighting only or 2) for the combination of 

lighting and HVAC impacts. It is beneficial to explicitly examine the difference between the two, namely 

the impact of heating and cooling on the savings we estimated for these control systems. 

In our examination of heating and cooling impacts of these systems, we examined the additional energy 

saved with lower lighting loads in a cooling condition, and the energy savings lost with lower lighting 

loads in a heating condition (see discussion in Effects on Heating and Cooling Energy for methodology). 

In general, most of these spaces were in cooling mode during the majority of the daylit hours. Therefore, 

there was generally additional HVAC savings resulting from daylighting controls, even in the cold 

Minnesota climate. 

                                                      

40 “Sidelighting Photocontrols Field Study,” Heschong Mahone Group, Inc., Report #06-152, 2005 
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The impacts of heating and cooling were normalized separately for TMY weather data, and then 

combined into a single factor. Each space in our study had very unique load conditions, including people, 

equipment, HVAC system type, and solar orientation. Therefore it is not useful to comment on the 

impacts of each space individually. In aggregate though, it is useful to point out that there was a net 

cooling benefit seen from daylighting control. Across all the spaces that we studied, in a typical 

meteorological year, this impact averages an additional 13% savings. This means that for every kWh of 

lighting energy saved, 0.13 kWh of HVAC energy were saved in addition. 

Comparison to Modeling  

It is useful to compare these measured results to the results of energy modeling of these spaces in the 

commonly used DOE-2 modeling platform (see Modeling M for our approach). This may help us better 

understand the magnitude of error inherent in typical energy models of daylighting systems. Figure 22 

illustrates the percent difference between modeled and measured results as a function of the system‟s 

effectiveness.  

Figure 22. Percent difference of modeled percent savings and savings per controlled power as a function of system 

effectiveness. 

 

Note that as the system effectiveness increases the modeled and measured savings achieve much closer 

agreement. Energy modeling, with its assumption of ideal control, appears to have the potential of being 

an accurate predictive tool for highly effective (>75%) control systems. However, the agreement between 

modeled and measured savings diverges significantly for the poorly controlled systems, with the model 

significantly over-predicting savings as compared to the measured results. Several outliers existed that 

correspond to the three models in which the obstruction factor was calculated to be greater than one. In 

these models some other source of error was present such that DOE-2‟s split flux method could not 

accurately predict the illuminance in the space. Future work would involve a closer inspection of these 

outliers. 
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Our next step in this comparison was to apply the actual measured controls effectiveness (post-

commissioning) to the model, as a modifier. When this is done, the agreement between measured and 

modeled savings increased. Table 9 summarizes the measured and modeled lighting savings results. 

Table 9. Summary of measured and modeled savings results. 

 

Note that the measured lighting savings pertain to the post-commissioning, TMY-extrapolated results that 

we previously outlined in the Savings Due to Commissioning section. The effectiveness-modified 

modeling results were then in good overall agreement with the measured results. Figure 23 illustrates the 

relationship between modeled and measured kWh savings per controlled kW.  
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Figure 23. Modeled versus measured kWh savings per controlled kW. 

 

Note that with the effectiveness-modifier in place, the overall agreement is relatively high (R
2
 = 0.75) but 

the model does under-predict savings as compared to the measured values. “Calibrating” a model using 

such an effectiveness modifier would therefore be a conservative estimate of energy savings. A 

comparison using percentage saving shows a similar agreement as the kWh savings per controlled kW 

with relatively high agreement (R
2
 = 0.75) and consistent under-prediction of savings as compared to 

measured values.  

Throughout the modeling effort, one variable with significant influence was the obstruction factor. This 

factor scales the predicted illuminance levels, linearly, to represent furniture or other obstructions. The 

average obstruction factor for our modeled spaces was 35%, which means our original models that did not 

include obstruction factors were over-predicting illuminance levels by 65%. A portion of this over-

prediction came from interior obstructions such as furniture and partitions. Some of the over-prediction 

would likely come from other sources in the DOE-2 illuminance algorithm as well. Further research is 

warranted to develop typical obstruction factors for differing furniture and interior geometries. This, 

coupled with increased awareness within the modeling community of this input, would lead to higher 

modeling accuracy.  

Some Daylighting Design Conclusions 

Though the primary thrust of this research focused on the performance of controls systems and their 

operation, the data can be used for higher-level observations of other aspects of daylighting design as 

well. One trend that emerged from the accumulated lighting data at multiple points in every space, was 

the significant impact of furniture design on lighting levels. The height of walls, orientation of work 

surfaces, and reflectance of the furniture all had a large impact on lighting levels at the critical workplane. 

Our energy savings data correlated to one such furniture property, workstation wall height or „cubicle 

height.‟ Figure 24 demonstrates this correlation. Here lighting savings is plotted as a function of the 
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difference between the window head height (top of the windows) and the cubicle height (top of the 

workstation walls). The correlation utilizes twenty spaces with a broad range of architectural features, so 

the resulting correlation equation would contain a high degree of error across a larger population. 

However this trend is qualitatively noteworthy, specifically in that five of the six spaces with less than a 

5.5 foot difference between window head and cubicle wall were poor performers with ~20% savings or 

less. In buildings with greater than a 5.5 foot difference, 13 out of 14 saved over 30% of their lighting 

energy. To put this in practical terms, for a typical building that may have a 9-foot window head height, 

the walls on cubicles should be at 3.5 feet or less, which is a common high performance target. Otherwise 

system performance will be penalized. This correlation suggests that interior design staff need to be 

involved in daylighting design as well. 

Figure 24. Lighting savings (%) as a function of the differential between window head height and cubicle 

(workstation) wall height. 

 

One design feature often correlated with daylighting performance is window-to-wall ratio (WWR). 

Enough glazing is needed for light to enter the space, but larger amounts of glazing equate to greater 

thermal losses through the windows, and greater potential for glare to impact occupants. All of the 

buildings that we studied were designed, to some extent, to take advantage of daylighting. Therefore the 

smallest window-to-wall ratio of the twenty spaces we studied was 25%. Again, describing a specific 

correlation function from this sample may not be useful for the larger population, but there is enough data 

to make some observations. First, there is no clear, strong trend between savings and glazing size, 

especially for non-curtainwalled spaces. Secondly, even at lower window-to-wall ratios of 25-35%, there 

is good potential for significant energy savings: three well-performing systems with less than 35% 

glazing saved between 51 and 82% of lighting energy. 
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Figure 25. Lighting savings (%) as a function of the window-to-wall ratio in the space. p=0.03 for this data – there is 

a trend towards greater daylighting benefit from full window walls (75%+ WWR), but 30% WWR can be as 

effective as buildings with more glazing (and correspondingly higher thermal losses). 

 

A similar story emerges when the lighting savings is plotted against a space‟s daylight factor. Daylight 

factor is a parameter designed to quickly ascertain a space‟s daylight potential. It includes information 

about the space‟s total area, window area, window visible transmissivity, surface reflectances, and 

exterior shading. Daylight factors between two and five are considered good, providing a space with high 

enough natural light levels without being overlit. Although daylight factor is being replaced by more 

sophisticated, time-dependent parameters such as daylight autonomy, it still serves as a simple way to 

quickly understand a space‟s daylight potential. Figure 26 illustrates the relationship between post-

commissioning lighting savings and a space‟s daylight factor.  
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Figure 26. Lighting savings (%) as a function of the daylight factor in the space. 

 

The first thing to notice in Figure 26 is that half of the spaces are potentially overly daylit. Of these 

spaces, four are south facing, requiring interior blinds to minimize the impact of glare. This glare still 

resulted in a problem in some of those spaces (see Regarding Occupant Comfort). Also, five of the spaces 

in the range of good daylight factor are poor performers. This reinforces the point that a space can be 

architecturally well-designed, but still exhibit low daylight savings due to other factors.  

ECONOMICS OF DAYLIGHTING 

Daylighting controls come with significant additional up-front costs. From a review of relevant 

literature
41

 and from recent project experience, we have found costs can range anywhere from $0.75 - 

$3.00 per square foot depending on the complexity and flexibility of the system. The lower end of this 

range would generally apply to simple systems, such as controls integral to the luminaire (or fixture), 

while the upper end of the range applies to more complex systems, such as full-building automation with 

individual, digitally addressable ballasts. It is not obvious on most projects whether this first cost increase 

is justifiable based on energy savings. We have therefore completed a life cycle assessment based on the 

benefit of the energy cost saved only. This does not include other benefits such as incentives, increased 

productivity, carbon credits, etc. This assessment is valid for building design teams or owners looking to 

incorporate the technology, and also for utility program personnel in Minnesota who need this type of 

information to implement and evaluate these programs. 

                                                      

41 This information comes from cost data from multiple projects on which we have consulted,  “Commercial Building 

Toplighting: Energy Saving Potential and Potential Paths Forward”, TIAX LLC for US Department of Energy, June 2008, and 

“Lighting and Daylighting Design with Efficiency”, Presentation for Energy Center University, Jim Benya, August 2010. 
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We conducted life cycle cost analysis in accordance with the procedures in the Federal Energy 

Management Program (FEMP).
42

  The inputs to this analysis are shown in Table 10. Note that we are not 

addressing maintenance cost here, as we have observed that most systems do not require additional 

maintenance on the daylighting controls. The one exception was a building with very sophisticated 

controls and the owner had a maintenance contract to operate them optimally. A system complex enough 

to require this level of oversight may have some additional operating cost beyond what is shown below. 

Table 10. Economic inputs for life cycle cost analysis. 

 

We have divided building owners into two primary economic categories: corporation and institution. We 

considered the economic outcome of these owners choosing daylighting controls in Minnesota. 

Corporations are assumed to use a higher discount factor of 9%, and pay corporate tax rates typical of 

Minnesota businesses. Institutions are assumed to pay no taxes, and use a lower discount factor of 5%. 

Following FEMP guidelines to decide whether to adopt a technology, these organizations would need to 

determine whether the net present value of the technology was positive or negative. Because the costs of 

these systems can vary so much depending on the space in question, it is perhaps most useful to determine 

the cost at which the owner would break even (have a net present value of zero). For our median values of 

energy savings, this results in the break-even costs shown in Table 11 for a 1 kW system.  

Table 11. Break-even costs for installing automatic daylighting controls on 1 kW across multiple project scenarios. 

 

For a typical system, an owner can afford to spend about $1,000 for controls, which includes the premium 

for a dimming ballast, controllers, sensors, and installation, on a 1 kW system. This equates to about 

$1.00 per square foot for a building with a lighting power density of 1 W/ft
2
. If the system undergoes a 

full commissioning process, including optimization at startup, the owner can now afford to spend roughly 

$2,200 for a 1 kW system, or about $2.20 per square foot. The cost of the commissioning would need to 

fit into this higher cost, but with costs of controls reportedly between $0.75 and $3.00 per square foot, it‟s 

                                                      

42 NIST Handbook 135: Life-Cycle Costing Manual for the Federal Energy Management Program, US Department of Commerce 

National Institute of Standards and Technology, Prepared for the US Department of Energy, 1995. 
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likely that most projects would be able to afford the commissioning step too. In fact, several 

manufacturers will provide this service for free if prompted.  

Though we would recommend that these more technical and thorough economic metrics be used to judge 

the merit of automatic daylighting controls, some readers will still be interested in payback metrics. For 

typical systems, if we assume an installed cost of $1.25/ft
2
 the payback is about 10-15 years. If we assume 

an installed cost of $2.00/ft
2
 the payback becomes 14-24 years. If the system undergoes a full 

commissioning process, these paybacks drop to 6-7 years at $1.25/ft
2
 upfront cost, and 8-11 years at 

$2.00/ft
2
 upfront cost (all paybacks assume a 1 W/ft

2
 system).  

UTILIZING MORE DAYLIGHT IN MINNESOTA BUILDINGS 

We can use the savings measured in these 20 spaces to extrapolate the potential for daylighting control 

savings to the entire state of Minnesota. This information is useful for the utility efficiency programs 

operating in Minnesota (also known as Conservation Improvement Programs, or CIPs, there). This 

extrapolation contains significant uncertainty, but is worth some consideration as our sample includes 

fairly typical daylit buildings (see Table 1 and Table 2), and covers two of the commercial building types, 

office and public assembly, with the most daylighting according to CBECS. Schools would be the other 

primary type that we have not represented, so this extrapolation has inaccuracy to the level that school 

lighting systems perform differently than offices and assembly spaces. CBECS also shows a considerable 

number of daylit religious worship buildings, but in all our investigation we did not come across evidence 

of this in Minnesota. Our sample was unfortunately too small to make post-weighting of the sample 

feasible. We therefore simply relied on a qualitative comparison between our sample and the larger 

population of daylit Minnesota buildings that we identified. (see the Extrapolation M section for more 

assumptions and details). 

First we examine the savings potential for daylighting controls in existing commercial buildings in 

Minnesota. We have estimated the annual lighting energy consumed in those spaces that have access to 

daylight
43

 at approximately 826,000 MWh. Table 12 outlines how much of this energy could be saved if 

automatic daylighting controls were installed in these areas. The technical potential is listed first; this is 

the total potential for savings in the state. Next, the annual achievable potential is shown, which is the 

expected energy savings each year from targeted programs or other efforts. Due to higher upfront cost, it 

is difficult to determine what percentage of the annual lighting retrofit work in the state would be 

successful in including daylighting controls. Therefore two annual assumptions are shown, one for 5% of 

the retrofit market and one for 25% of the retrofit market.  

  

                                                      

43 „Access to daylight‟ is difficult to define with available information. Some estimates seem to account for areas which have 

some daylight, but not enough to necessarily achieve a high daylight factor. We therefore choose a fraction on the more 

conservative end of the literature. 
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Table 12. Technical and annual achievable potential for installing automatic daylighting controls in existing 

Minnesota buildings. 

 

There is also potential for savings in recommissioning existing daylighting control systems in Minnesota 

buildings. The annual lighting energy consumed in those spaces that already have existing daylighting 

controls is approximately 56,400 MWh based on CBECS data and assumed growth in more recent years. 

Typical new construction rates were assumed, coupled with an assumed market growth rate (for an 

overall rexp growth term). Resulting recommissioning savings potentials are shown in Table 13. In the 

“low” case we assume a 10% market growth and adoption of recommissioning at 50% of current lighting 

retrofit rates, albeit on that much smaller population.
44

 In the “high” case we assume a higher 30% market 

growth and the same adoption as current lighting retrofit rates. 

Table 13. Technical and annual achievable potential for recommissioning existing automatic daylighting control 

systems in Minnesota. 

 

The statewide technical potential for retrofitting buildings with automatic daylighting controls is, as we 

would expect, very large at hundreds of millions of kWh. This is because the current market saturation of 

daylighting controls is quite low, at a few percent. The technical potential for recommissioning of existing 

daylighting control systems is conversely quite small, at 10-20 million kWh, for the same reason. 

However, note that the annual achievable potential of retrofit and recommissioning are much more 

similar. This is due to an assumption, and perception from the market actors we‟ve spoken with backs this 

up, that recommissioning would be more readily adopted due to lower cost. Though daylighting controls 

savings are most often achieved in new construction programs, it seems there are two separate measures 

with reasonable potential in the retrofit market. 

                                                      

44 Market growth rate assumptions are arbitrary, so a significant range is tested. Adoption rate is assumed to be on the same order 

of magnitude as lighting retrofits (based on “Minnesota Statewide Electricity Efficiency Potential Study DSM Potentials Report,” 

Navigant Consulting, submitted to Minnesota Office of Energy Security, April 2010). We assume this because daylighting 

savings are similar to lighting retrofits, and the costs are potentially lower but the idea is new to most program trade allies. 
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STEPS TO MORE EFFECTIVE DAYLIGHTING CONTROL 

In addition to learning from the quantitative data collected from these ten buildings and twenty spaces, we 

were able to learn lessons from speaking with occupants, managers, designers, owners, and 

manufacturers, as well as through commissioning the systems, and just observing the systems in operation 

across the data collection periods.  

Operational Problems 

First, through commissioning tasks, observation, and conversations with occupants we were able to 

determine the problems facing those systems that performed significantly less than optimally. When we 

add in the spaces that we visited but did not study, we looked closely at 43 systems, 24 of which had 

problems that left significant potential for improvement. These problems manifested themselves directly 

in our savings measurement and for spaces not studied in depth, were obvious through observation. The 

primary problems facing those 24 systems are listed in Table 14, with the number of times the problem 

was encountered and whether that problem could be addressed within a basic commissioning scope. 

Table 14. Primary problems leading to less than optimal daylighting control along with the frequency of each 

problem. Also, whether or not the problem could typically be addressed within a basic commissioning scope of 

services (assuming that scope covered the lighting system of course). Some of these systems did have more than one 

problem; only the primary problem was tracked. For example, furniture and sensor orientation were secondary 

problems on a few other systems. 

 

CONTROLS CALIBRATION 

To improve the daylighting controls in the majority of spaces to near optimal, we found that some amount 

of controls calibration was needed. Most often for a full dimming system this involved simply adjusting 

the setpoint or more accurately the controller gain of the system. On a couple systems it was other items 

such as a min/max setting or time delay. Where major adjustment was needed was generally an indication 

that no one calibrated or tested the controls. Where minor adjustment was needed, it appeared that the 

controls had been calibrated to some extent, but that too large of a safety factor had been applied, or 

controls were simply not calibrated well enough. Calibration and functional testing should be a primary 

step in any commissioning process. These tasks could be assigned to either the lighting contractor or the 

controls contractor depending on the scope of the control system, but could also be covered within the 

scope of the commissioning authority, to ensure they are completed properly. If spaces are sampled 

properly and a proper day with moderate light levels is picked, this can be a relatively simple task for 

fully dimming systems, and only requires a light meter as a tool. One potential cause for lack of full 
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calibration would be the contractor calibrating the system on too bright of a day. In this case, illuminance 

at the workplane is greater than design levels, making effective calibration impossible if additional 

shading is not available. 

Additionally, on one of the systems we studied, a deadband was set too low on a switching system 

causing the system to switch on and off too frequently. This problem may be caught in functional testing 

by a careful commissioning authority, but is more likely to be noticed by occupants during the first 

cloudy days. If occupants notice this problem before the controls, electrical, or commissioning contractors 

have left the project, they could make additional adjustments, again with little time spent.  

One setpoint that we did not consider part of our recommissioning scope was the maximum luminaire 

power. Reducing this setting, referred to as task tuning, would reduce the upper end of light levels and 

power at all times, even when it is dark. Therefore it is not purely a daylighting control adjustment, but 

has energy savings impact even during non-dimmed periods. It should be noted that where dimmable 

ballasts are purchased for daylighting control, they can also be used to modify the lighting levels in their 

full-power (i.e. night) condition so that they produce only the illumination required by design. This 

presents a significant additional opportunity for lighting savings, as many systems are installed with a 

level of safety factor for a variety of reasons that produces more light than is necessary. Where luminaires 

can be controlled differently by unit or by zone, this „tuning‟ of light levels can occur at a high level of 

resolution, evening out the light levels in the space and at the same time saving energy. Hennepin County, 

one of the building owners in our study, enthusiastically mentioned they planned to incorporate this 

approach into many of their daylit buildings. 

Finally, at times we also utilized shielding to create a more direct correlation between the sensor and 

workplane illuminances.  

LIGHTING ZONES 

A second type of problem that surfaced multiple times was zoning of the lighting controls. Three of the 

spaces had systems that attempted to control too large of an area in the building with a single sensor. This 

led to areas that had too little light even though the majority of the space was daylit adequately. This 

could be addressed as early as the latter half of the design process, and be reviewed by the commissioning 

authority. The designer should consider what area in the vicinity of the sensor will be receiving a uniform 

amount of daylight, and only control that extent with that sensor. Additional zones should be added as the 

façade or orientation changes. Additional control zones should be considered for deeper zones, especially 

if switching controls are used, or if the control zone penetrates further than 1.5× window height. Changes 

in furniture and interior obstructions should also be considered. For example, one building had a stairwell 

obstructing half of a zone. Of course adding zoning adds cost, so there is a balance to be reached. 

In some systems, if it is not caught earlier, poor zoning could also be addressed after installation, during 

functional testing or even post-occupancy. For this to occur, the system would need to be on a central 

building automation system (BAS) that allows different sets of lights, and sometimes individual 

luminaires in the case of addressable ballasts, to be assigned to different sensors after installation. This 

was possible in half of the buildings that we studied. In some cases, reassigning luminaires was quite 

complex, so it would still be recommended that zoning be thoroughly considered prior to or during 

installation whenever possible. 
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INTERIOR DESIGN: FURNITURE AND BLINDS 

Space design considerations like glare potential and obstructive furniture also caused systems to under-

perform. Unfortunately little can be done about these issues to recover energy savings once the spaces are 

designed. Office furniture (see discussion regarding cubicle walls in Some Daylighting Design 

Conclusions) is generally fixed after move-in. And glare is generally dealt with through shades/blinds, 

which create even less daylight savings. The designs for many of these buildings had addressed the bulk 

of glare through shading and orientation, but in many of the spaces there were still small portions of the 

year when direct sunlight entered the space and caused glare. This situation is very difficult to avoid 

entirely, so in these cases blinds were used to mitigate those issues.  

Often these temporary periods of glare are concentrated during certain times of the year, such as near the 

winter solstice when the sun is low in the sky. Occupants will often pull the blinds at these times and then 

leave them down permanently. In our observations, we found that in the 12 spaces that utilized manually 

adjustable blinds, occupants in only 4 of the 12 spaces made some significant adjustment to the blinds 

over the entire six months of our study. If an annual blinds „reset‟ were included in standard maintenance 

procedure, many of these systems would be able to operate and save energy. Adjustment should occur at 

the end of significant glare seasons. On south-facing facades this would occur when the sun‟s azimuth 

reached the cut-off angle of exterior shades/glazing setbacks. More simply, blinds reset should occur once 

the daylight stops penetrating deep into the space.  

INCORRECT CONNECTION 

Two of the controls we studied were simply connected to the wrong relay. With hundreds of relays per 

building this should perhaps not be surprising. However this issue could easily be caught during 

functional testing, as it results in a photosensor that has no ability to modulate the lights in its zone. In the 

two misconnected spaces that we studied, it is likely that functional testing never occurred. 

SENSOR POSITION 

One of the systems that we identified had a sensor placed too far from the perimeter to accurately reflect 

the bulk of the luminaires being controlled. Sensor position should be an integral part of the daylighting 

design, and included explicitly on lighting layout drawings. Many daylighting simulation tools even allow 

for a near-optimal sensor position and orientation to be ascertained. However, in several of the buildings 

we studied, the placement of the sensor was never considered by the designer, did not appear in any 

design documentation, and was left to the contractor. There may be some advantage in allowing a 

contractor or manufacturer to position the sensor after the space is built and fit-out, for example furniture 

location and geometry will have been finalized. But to the extent possible some amount of guidance 

should probably be provided by the designer. 

Lessons Learned: Controls Startup Process 

As the above issues illustrate, the installation and startup process is pivotal in determining the 

performance of daylighting control systems. At the very least, an individual should be assigned to 

complete basic commissioning steps (installation and calibration checks, and functional testing) for the 

lighting controls in a significant portion of the building. Most of the systems‟ problems that we 

encountered could be solved during that process. As we‟ve pointed out, this is being addressed to some 

extent in the 2012 IECC, which will require some level of functional testing of these controls. However, 

the specific steps in that process, and the level to which designers/contractors will actually go to that end, 
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remains to be seen. Our study did turn up a few helpful observations and lessons learned for those looking 

to implement such a process to improve their performance.  

A large majority of building managers and contractors we spoke with were not able to assist with startup 

because the controls interfaces were too complex. The manufacturer was needed to assist at this stage. 

This suggests that either manufacturers need to include startup in the cost of the system or, more usefully, 

simplify the user interface so that building managers and contractors can do it for themselves. This would 

also improve continual maintenance (see the next section). Specifically, personnel on some of these 

building projects suggested that they are now used to the more graphical approaches that most HVAC 

interfaces utilize with zones shown on plan view, rather than the codification used by many lighting 

control interfaces.  

We did notice that some of the more complex functions in the daylighting control systems, such as 

networking, zoning of luminaires, and auto-calibration, were designed to try to improve performance, 

which is a positive step. However, our data shows that the small improvements that result from these 

innovations are dwarfed by the penalty that can be caused when a system is not tuned properly because no 

one is quite confident or capable enough to do so.
45

  

Another problem caused by these systems being complex and interdisciplinary in nature, is lack of 

accountability. Hennepin County, which operates the libraries that we studied, encountered and overcome 

this problem after considerable effort. They found initially that the luminaire manufacturer, controls 

manufacturer, and contractor all were unwilling to take ownership of problems that arose after occupancy. 

After the County initially had trouble making progress, they brought all these parties into the same room, 

discussed the specific system layout and corresponding problems, and effective solutions were found 

relatively quickly. This lesson suggests that sophisticated lighting control systems may benefit from their 

own focused construction meeting, before installation is complete, to identify these issues, assign 

ownership, and make the system work. 

The problems, observations, and potential solutions that this research yielded in the area of controls 

startup are being compiled into a brief fact sheet to attempt to educate others.  

Lessons Learned: Controls Maintenance 

In addition to the design and startup considerations we have discussed, ongoing operation and 

maintenance (O&M) of all lighting systems is generally needed. Our conversations with building 

managers and our interactions with them during recommissioning uncovered some additional lessons 

regarding O&M. 

Training of building staff is possibly the primary consideration we encountered. Training can take many 

forms, but at a minimum the daylighting controls should be mentioned in the training, and O&M 

documents transferred to the owner. In several of the spaces we studied the building manager knew 

daylight control was supposed to be occurring, but no training had taken place and no documents 

                                                      

45 Interestingly, one simplification manufacturers have made is to eliminate scales and units from system interfaces, such that the 

operator cannot actually see a scale for light sensitivity/gain, or fractional power or fractional light output. Since the rest of the 

system is not simple enough for a non-expert to use, the experts that do end up calibrating and operating the systems are left 

without information that would‟ve been useful.  
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transferred. A few of the staff were not even aware that daylight was a part of the control systems. Other 

staffs were trained, but self-focused the training effort on scheduling, which is a higher priority for many 

building managers because it can lead to more calls from occupants. Perhaps the importance of the 

daylighting controls and their benefits should be highlighted in this training, as obvious as it may sound. 

At both the WECC and CEE spaces, the systems were actually a simple, integrated-fixture control that 

could have been taught to both building managers and occupants who could have adjusted their own 

systems if interested. However our interviews uncovered that such information was either poorly 

conveyed or not conveyed at all. Even when training does occur and is seemingly thorough, we found that 

owners still simply did not know what questions to ask or what items were important for daylighting. 

Many of them have never used a daylighting control system before. The problems, observations, and 

potential solutions that this research yielded in the area of controls startup, including training, are being 

compiled into a brief fact sheet to improve these processes.  

Again, controls interfaces that were too complex hampered maintenance efforts. One user reported that 

the complicated ballast address system required more time to complete simple things like replacing a 

ballast and connecting it to the proper controls. Another user reported disabling the controls in a couple of 

the spaces because, though trained, the basic steps in tuning the controls were too complex for him to fix 

minor issues causing occupant complaints. If a manufacturer‟s solution to this problem is to provide this 

maintenance as a service―direction some prefer―this cost needs to be factored into the cost/benefit 

package that they sell the owner at the outset. 

One final note on maintenance of these systems. Since the location and design of intermediate controls 

equipment such as controllers, power packs, and even relay boxes, is often left up to the contractor, it is 

often not shown on the drawings. This presents a problem in both calibration and maintenance of the 

systems because staff rarely knows where to find them. Controllers and relay panels should be located in 

the electrical room, or within sight of the luminaire junction box if in the ceiling. Better yet, intermediate 

equipment, controllers primarily, need to be shown on drawings, or at least wiring diagrams, with rough 

location noted. 

Between complexity and lack of training, O&M of these systems is an issue that should be addressed as 

part of the commissioning process so that operation is seamless in the handover to the owner. Of course, 

as staff at CEE, an organization that runs lighting efficiency programs, pointed out to us, even a very 

motivated owner just doesn‟t have time to make operating their daylighting system a priority. So though 

maintenance is important, the importance of calibrating and testing that system to operate well on day one 

is not diminished. 

Use of Alternate Control Methods 

Of the 43 spaces that we considered for inclusion in the study, lights in the vast majority of spaces were 

controlled by an indoor, ceiling mounted sensor, independent of the luminaire, viewing the workspace. 

This has emerged as a successful approach. However, there are potentially times when other approaches 

are warranted, and some owners and designers that we encountered have had success with three 

alternative methods in certain space types. Owners of large buildings could potentially benefit from more 

than one different approach in their building. 
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FIXTURE-INTEGRATED CONTROLS 

A few of the spaces that we studied utilized controls integral to the luminaire (fixture) ― the photosensor 

and controller was factory installed in the luminaires. There are several benefits to this approach: it saves 

considerable cost in equipment, controls, and installation, and it is fairly simple to calibrate, requiring the 

turning of one simple knob. There were also drawbacks to this approach. The first is that it limits 

flexibility. The control is in a fixed location and has a fixed control sequence including a fixed minimum 

gain. Also, the calibration cannot be completed without reaching the luminaire with a ladder. This blocks 

the sensor and makes calibration more tedious. We found this approach in the CEE spaces. In these 

spaces we were not able to adjust the gain as low as the design setpoint for the space, so we did not 

achieve optimal results. At WECC we had the same problem, but to a lesser degree. Here the controls 

were near optimal after calibration and as a result performed very well. In both cases, the ease of 

calibration was very helpful. This type of control would be a great fit for smaller daylit areas where the 

greater effort of executing a separate daylighting control system is simply not worth it. This would also be 

a good solution for projects where the resources, in terms of budget or personnel, do not allow for a very 

complex system to be installed and operated effectively. This system is so straightforward that the 

occupants could even make their own adjustments, if given a ladder. 

OPEN LOOP CONTROL 

One owner we spoke with, but were not able to study in depth, had a multi-building campus. He had 

gravitated towards a significant usage of open-loop control. With plenty of square footage to light and 

control, he was able to have one central open loop sensor used for specific area types in all of his 

buildings, saving on installation and maintenance. This approach was applicable and effective for all 

spaces which were transient―such as lobbies, general gathering areas, corridors, and stairwells―or 

spaces that had so much light that any amount of daylight could result in the lights being off or near 

off―such as lobbies with curtainwall glazing. Of course in continually occupied spaces where work is 

being done like offices or classrooms this approach has proven quite problematic. This is because the 

open loop sensor doesn‟t take into account any of the specific needs in each of those spaces, such as 

changes in blinds, furnishings, or sun path. One large space that we studied that should have taken 

advantage of this approach was Central Library N A. The controls in this system performed beautifully, 

but with a north facing space, a full curtainwall, and transient occupancy, a simpler approach such as open 

loop would have had similar results. Such spaces should be controlled aggressively through simpler, less 

expensive methods such as open loop, on-off control, or even an astronomical timeclock. 

OCCUPANCY SENSORS 

The perimeter open office in the WECC building included occupancy sensors. The daylight controls at 

this space saved a considerable amount of energy, partially due to the high ceiling and low workstation 

wall heights. For the same reason, the occupancy sensors were not as effective. There was not a sensor for 

each workstation, so in order to ensure they did not turn lights off on occupants, they had to be placed and 

tuned to be sensitive to a level such that the lights were nearly constantly triggered on by someone in the 

general area. We were able to completely filter out their effect within our energy saving calculation as 

they did not tend to control the lights except very early and late in the day. 

However, we did find a few spaces that should have used additional occupancy sensing, in some cases 

instead of daylight controls. Private offices are one obvious candidate, but we also found that certain 
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infrequently used portions of the libraries would have been a good occupancy control application. The 

Labs building, though open office, had a much lower occupancy rate than most due to staff conducting 

much of their work in an adjacent laboratory; as a result this space would have been a reasonable 

occupancy sensor application (perhaps along with the daylighting controls).  

FULL-OFF CONTROL 

Most automatic dimming control systems dim to some minimum light level and power. We found that in 

some more transient or well-lit spaces (libraries), and any space where occupants are actively interested in 

energy savings (CEE, WECC), additional energy could have been saved if some mechanism existed to 

switch lights fully off (not just dim to a minimum). Manual switches or an automatic sequence could both 

work. 

In short, automatic closed-loop controls with full dimming may be the best approach for many 

applications, but they are certainly not the best approach for all applications. 

Regarding Occupant Comfort 

We surveyed building occupants to determine how they react to and interact with the daylighting control 

approach in their space. Because impacts on comfort are naturally more important to owners and 

occupants than energy savings, the recommendations made for energy savings must not compromise 

comfort. Our recommendations for these systems could potentially be impacted by occupant comments.  

In general, glare and heat from direct sun were the most common comfort problems. These are not 

problems with automatic daylighting control per se, but are indirectly related in that architects may 

choose to add glazing to improve daylighting, and potentially increase glare and heat as a result. Glare 

and heat were problems seen more often in the larger population than in systems that saved larger 

amounts of energy, suggesting that if these problems can be controlled, a control system stands a better 

chance of performing effectively. Properly orienting and massing a space, and using external glare 

control, are effective methods of dealing with direct sun. It is best for designers to 1) limit the amount of 

glazing as suggested by Figure 25, and 2) to include interior glare control such as blinds. Note the 

previous discussion on blinds operation. 

The second largest problem was not enough light in spaces. This concern was generally voiced by a small 

minority in the space. This is consistent with our finding that in reality, only one of 20 spaces did not 

have enough light delivered to the critical workplane. One potential solution for this minority of 

occupants is increased use of task lighting. Only about half of the occupants complaining about low light 

levels reported using task lights. More task light awareness is needed; a few occupants were not even 

aware of the task lighting, and one respondent reported the realization that they should use their task light 

more.  

At both the WPPI and CEE spaces, we also found that computer monitor placement had a big impact on 

both the glare and low light concerns. These users generally looked most often at their monitor and the 

spaces directly adjacent, and either indirect glare or shadows caused problems in these areas. Facing 

monitors away from the daylight, and placing the monitor between the occupant and the daylight or 

perpendicular to it, should mitigate these problems to some extent. In any case, this is one more area 
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where it could be helpful to involve the interior designer in more holistic design decisions for daylit 

spaces.  
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CONCLUSIONS AND FUTURE WORK 

We successfully met our objective of testing the actual energy performance of automatic daylighting 

controls and measuring the additional impact of commissioning those controls. We have found that these 

types of controls can be complex, with potential for significant operational issues. However we see 

opportunities for substantial energy savings from multiple angles. 

OPPORTUNITY #1 

First, when installed, commissioned, and operated to perform as designed, daylighting controls can be an 

economically attractive solution for some building owners and managers. The systems we monitored 

typically exhibited substantial energy savings: median values were 23% savings prior to commissioning 

and 63%, or 1,976 kWh per kW, after commissioning. With these levels of performance we estimated that 

owners break even at a cost of $1,000-2,200 per kW of controlled lighting for these systems, which is in 

line with current control system costs.  

This opportunity is most promising in new construction or major renovation where daylighting can be 

included as part of the design from the beginning. Especially with regards to the availability of daylight in 

the space; all but one of the spaces we studied (CEE A) were designed with daylighting in mind. But there 

are certainly retrofit opportunities as well, in existing buildings with adequate daylight that are 

undergoing lighting retrofit. The daylight availability needs to be studied carefully in these existing 

building cases, and then the luminaires being retrofitted should include dimming ballasts. Stepped 

daylighting approaches are potentially applicable to a wider range of buildings, including simple retrofit 

with existing light fixtures, but have drawbacks beyond what we have explored in this study.  

Some utility programs, or CIPs, in Minnesota take advantage of this savings opportunity already, in 

prescriptive and comprehensive programs for new construction. Those that do not could acquire 

additional savings with this measure. With the potential for savings in retrofit scenarios as well, general 

lighting retrofit programs should also take note (see discussion of utility incentive programs below). 

OPPORTUNITY #2 

Secondly, we have identified a significant amount of savings being „left on the table‟ in systems that are 

designed for substantial energy savings but fall considerably short of optimal performance. The median 

improvement in system savings with our commissioning effort was 88%, or 690 kWh per kW. The 

opportunity is in improving the execution of these systems during their initial installation. A clear 

solution to this problem is a more robust, formalized commissioning focus on daylighting control 

systems. The demonstrated savings indicates that there is value to be captured in the commissioning 

process for building projects. As a result, the real opportunity here comes from contractors, 

commissioning agents, and utility program implementers to demonstrate this value to building designers 

and owners and ensure that these steps are completed. 

The pieces of this commissioning effort that we found lacking and in need of formalization include: 

 Establishment of clear illuminance targets prior to design  

 Review of design documents to ensure that location, connections, and sequences of controls are 

explicitly laid out, and zoning and sensor location are appropriate 
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 Performance testing of controls as installed to ensure proper operation, including tuning of all 

available control setpoints 
46

 

 Verification that proper training has occurred, and the importance of the controls to system savings 

is relayed to the owner 

 

As modern daylighting control systems are generally increasing in complexity, this importance is only 

growing. The interdisciplinary nature of the systems makes commissioning even more beneficial. Such a 

system is influenced by almost all personnel on the project, and these individuals need to be coordinated. 

In theory commissioning of daylighting should already occur on projects with third-party commissioning 

authorities, but several of the buildings we studied had such an arrangement, and not all had effectively 

commissioned controls. The daylighting controls should be formalized into the commissioning scope and 

specifications, and this should occur early in design. Even if a third-party commissioner is not involved, a 

more thorough commissioning line item could appear in the contractor‟s (or vendor‟s) scope to ensure 

that the work is completed. Finally, commissioning could be offered as an added service by the 

manufacturer. If that is the case, it would be beneficial for manufacturers to make their systems and 

interfaces simple enough that the contractors and managers can be aware that their systems are not 

working properly, and be able to adjust them later if needed. This need is being at least addressed in the 

2012 IECC, which will require some level of functional testing of daylighting controls. However, the 

specific steps in that process, and the level to which designers/contractors will actually go to that end, 

remains to be seen. 

For utility program managers, this opportunity does not represent potential for new savings. Rather, it 

represents a risk mitigation strategy for the existing savings stream in daylighting controls. To ensure that 

savings are fully realized, our results suggest that perhaps commissioning should be required, and 

adequately demonstrated―even the 2012 IECC cannot ensure that―if incentives are to be paid for 

daylighting controls.  

OPPORTUNITY #3 

Finally, there is a substantial number of daylighting control systems already implemented that have room 

for improvement due to incomplete execution. We have identified the inadequacies that we found in such 

systems (see Operational Problems), and have quantified the potential savings that exist as a result. 

Again, recommissioning saved an additional 690 kWh per kW of lighting energy in the median case, and 

up to 2,420 kWh per kW in the worst case. This potential exists as an opportunity for consultants and 

contractors to offer a service in recommissioning of daylighting systems. This may work best coupled 

with other similar processes to take advantage of economies of scale, as the time taken to understand the 

lighting control system is generally a significant fixed cost. 

This also represents an opportunity for Minnesota utility programs as a new program component. The 

service should certainly be, and likely already is, included in retrocommissioning program offerings for 

buildings that happen to have daylighting controls. In addition though, it could become a targeted 

program component for lighting retrofit programs, and even be coupled with work done on the other 

pieces of the lighting control system. Daylighting controls alone offer a substantial savings for such a 

                                                      

46 Formally, in systems commissioning the contractor would run the test and the commissioning agent would simply verify that 

the test has occurred. Here we combine those tasks; the testing simply must be done. 
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program element in large buildings with such controls. When coupled with recommissioning of 

occupancy sensors and lighting scheduling (which, anecdotally, also present savings opportunities) they 

could be a nice addition to lighting retrofit programs needing to find new opportunities to pursue. 

APPLICATION DETAILS FOR MINNESOTA UTILITIES 

The opportunities above all require attention from Minnesota‟s CIPs. Though we were only able to study 

twenty examples of daylighting controls in practice, results here are robust enough to use in program 

design and implementation. 

Demonstrating the savings from full commissioning was our primary focus, and our experiment was 

designed to that end. Therefore, those results are likely the most representative of the actual population. 

Utility program staff can use the results for savings from full commissioning to more readily include this 

measure in retrocommissioning programs. More innovatively, these results could be used as a basis for a 

more explicit recommissioning component within lighting programs. A prescriptive offering for a simple 

recommissioning of such systems is even possible. In implementing this offering, the challenge would lie 

in verifying that the recommissioning tasks have taken place. This would need more consideration from 

program personnel. A similar measure to consider as a model might be boiler tune-ups. In this type of 

program, third-party professionals (sometimes pre-certified) are required to complete a set of tuning tasks; 

upon completion an incentive is paid to the owner. As daylighting recommissioning is not likely to be a 

large program, further piloting may not be necessary beyond the results of this study. 

There is considerably less certainty in the absolute savings metric being representative of daylighting 

controls in new buildings, because each commercial building is so different. However, for buildings of the 

type we studied, such as office or public assembly with closed loop control and primarily continuous 

dimming, the savings per kW of installed lighting are representative enough to be a good check on the 

more common calculation methods and deemed savings being used (which rely on assumptions such as 

typical daylight hours and perfect operation). Assuming commissioning is required as part of the measure, 

the larger results found for the post-commissioning period could be used, leading to an increase in 

measure savings. These results would be just as valid for retrofit as they are for new construction. In both 

cases they would need additional documentation demonstrating the daylighting autonomy of the spaces 

controlled. In addition to using the absolute savings, it is also possible that the post-commissioning 

controls effectiveness (we recorded an average of 75% and median of 86%) could simply be used as a 

factor to derate simple savings based on „perfect‟ controls. Again, this assumes commissioning is actually 

completed as part of the program requirement. 

Finally, the amount of savings being missed in systems that are not properly executed and started up is 

not an opportunity, but an area for risk to be mitigated in programs. Program personnel could mitigate this 

risk by requiring that projects seeking incentives for daylighting controls undergo the minimum 

commissioning steps discussed above. This requirement should be added in some capacity to new 

construction programs immediately, whether a third party is required or the contractor or designer simply 

completes documentation verifying that they have completed the tasks.  

These opportunities apply to all utilities in Minnesota, as the only prerequisite is a commercial building, 

or potential commercial building for new construction, with adequate windows for daylight. The 
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technology has economies of scale like other sophisticated energy technologies. There is significant fixed 

cost in initial control installation and commissioning and as a result tends to be more cost-effective in 

large buildings. Therefore, there are likely to be territories in the state with a relatively minimal number 

of larger commercial buildings where these opportunities may not warrant a full program. These areas 

would be in contrast to the Minneapolis-St. Paul metropolitan area, where there are thousands of such 

buildings in place and under construction that have potential for the technology. 

FURTHER WORK 

There is certainly room to continue study of automatic daylighting control performance. We recognized a 

few specific issues during the course of our study. 

A few of the owners mentioned that ballast failure was significantly higher among their dimming ballasts. 

A couple of these owners reported that failure was mitigated to some extent by more thoroughly „burning 

in‟ the ballasts, which means running them at 100% power for the first several days of their lifetime (this 

is recommended by many manufacturers). We did not study the benefit of this specifically, and more 

importantly were not able to incorporate variance in ballast failure into our economics. It was not even 

clear from talking to owners that there was any well-established ballast burn-in process being followed, 

and certainly not whether the burn-in was mitigating the failures to the level of non-dimming systems. 

It would also be beneficial to measure a broader data set of system performances. If metrics like controls 

effectiveness can be set aside, this type of study can be replicated on a wider scale using just simple 

electrical current measurement. Other space types such as schools, private office, and possibly religious 

worship, could be studied. Performance of newer daylighting control products could also be studied, as 

the changes in these products from year to year are substantial. 

More information is also needed on implementation rates of this technology. Not only is the data in 

CBECS more than nine-years old, it is also not entirely clear. Are owners more willing to pay the cost of 

sophisticated, complex full building control systems? Are full dimming systems receiving the large 

majority of market share as our sample showed? Is penetration into the new construction market still 

increasing, and is there any substantial penetration into the basic retrofit (not major-renovation) market? 

A final area for future study also came from discussions with owners and contractors, and that was the 

issue of controls complexity. While it was clear that certain things made controls manipulation easier, 

such as graphic interfaces, minimal control setpoints, simplified zoning and ballast assignments, there is 

definitely the need to investigate what controls solutions might be more readily operable by typical 

owners, operators, and contractors. It seems that this problem needs to be solved before these systems can 

become the control strategy of choice in the mass market, and perform robustly across the market. At the 

same time, if systems can be made less complex, the commissioning steps that we have outlined will 

become much easier for owners to incorporate and full savings will become much easier to realize. 
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GLOSSARY 

Automatic Daylighting Control: see Daylighting Control; any daylighting control that is accomplished 

automatically without occupant input. 

Building Automation System: a computerized network of electronic devices designed to monitor 

mechanical, electronic, and lighting in a building. 

Closed Loop: a daylight control system in which the photosensor views the interior illuminance levels.  

Coefficient of Performance:  the efficiency of a piece of equipment expressed as the ratio of the useful 

energy provided to the amount of energy consumed. 

Commissioning: as it pertains to lighting controls, this is a plan and process enacted to ensure that 

lighting control systems perform interactively according to the intent of the lighting design and control 

sequences.  

Conservation Improvement Program: a category of energy efficiency programs in Minnesota, 

generally operated by utility companies, which provide incentives for improvements in energy usage. 

Controls Effectiveness: the performance of a daylight control system expressed as the ratio of actual 

lighting energy savings to the energy savings achievable with perfectly operating controls. 

Critical Workplane: the working surface within a daylight control system that is most likely to receive 

the least amount of light. 

Curtainwall: a nonstructural outer covering, often transparent, of a building.  

Daylighting Control: the practice of utilizing photosensors to reduce the electric light in a space when 

sufficient daylight is present. 

Deadband: the area of a signal range where no action occurs. 

DOE-2: a building energy analysis program capable of predicting a building‟s energy use and cost. 

Dimming Ballast: a device that provides the proper operating electrical conditions to power lamps, 

allowing their lighting output to be lowered. 

Extraterrestrial Radiation: the intensity of solar energy incident on a surface immediately outside the 

earth‟s atmosphere. 

Functional Testing: a quality assurance process designed to verify a system‟s operation against design 

documents and specifications. 

Glare: visual discomfort due to bright light or high contrast in light levels. 

Glazing: the part of a building‟s envelope made of glass. 
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Global Horizontal Radiation: the intensity of solar energy incident on a surface after the light passes 

through the earth‟s atmosphere. 

Illuminance: a measure of the amount of incident light on a surface per unit area. 

Life Cycle Cost Analysis: a technique for determining the total cost of owning and operating a building 

over a specific time interval. 

Luminaire: a device used to create artificial light from electricity (often called a light fixture). 

Obstruction Factor: the fraction of light that reaches the workplane out of the total daylight available 

from building fenestration. 

Open Loop: a daylight control system in which the photosensor views the exterior illuminance levels. 

Photocontrol: the use of a photosensor to detect and adjust the amount of electric light provided to a 

space. 

Photosensor: a device used for detecting the amount of light in a space. 

Power Factor: the ratio of the real power flow to an electrical load to the apparent power in the electrical 

circuit. 

Recommissioning: performing commissioning on a system that was previously commissioned but has 

undergone some modification(s); generally assumes a complementary process acting to improve upon any 

deficiencies found. 

Reflectance: a surface property that expresses the fraction of incident light that the given surface bounces 

back into the space. 

Startup: as it pertains to lighting controls, this is the phase of construction when the control settings are 

input, the lights powered for the first time, and any initial operating requirements of the manufacturer are 

completed.  

Target Illuminance: the amount of incident light on a surface per unit area specified as necessary for 

performing a given task on that surface. 

Typical Meteorological Year: a collection of weather data for a given location that reflects the location‟s 

annual averages while maintaining hourly variability within the location‟s expected ranges. 

Visible Transmittance: a property of glazing that expresses the percentage of visible light that passes 

through it. 

Workplane Illuminance: the amount of incident light per unit area on a working surface. 

Zone: as it pertains to lighting controls, a zone encompasses the floor area lit by all the luminaires on a 

common controller.  
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APPENDIX A.  

SURVEY INSTRUMENTS 

Building Operator Interview Questions 

 

What year was the daylighting system first operational? 

On a scale of 1-5, how effective is the daylighting control system at saving energy?  And how long 

has it been in this condition? (5 being fully effective) 

On a scale of 1-5, what level of commissioning did the control system undergo? (1 being no Cx, 5 

being full Cx) 

Who is responsible for the energy management of the lighting? (could be a contractor) 

Did that person receive any training for this lighting system? 

How much have the staff adjusted the controls since the building was handed over? 

On a scale of 1-5, how much maintenance does the system require? (3 being typical for a lighting, 5 

being the most possible) 

Do the lamps/ballasts need to be changed out more often than typical systems? 

On a scale of 1-5, how satisfied are you and the occupants with the system operation? (5 being very 

satisfied) 

If anything is unsatisfactory, please describe: 

Describe the HVAC system for the building: 

- System: 

- Cooling plant / efficiency: 

- Heating plant / efficiency: 

Have you learned any other lessons about operating a daylighting system successfully? 
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Occupant Questionnaire 

 

Building / company name:  

Room number / floor number / location: ___________ 

Is your workspace immediately adjacent to a window?: ____________ 

1. Were you aware that the lights in your work area are controlled based on sunlight levels? If so, do 
you think that this system is effectively saving energy in the building? 

 

 

 

2. On a scale of 1-5, how satisfied are you with the lighting in your area, and its control?  (5 being very 
satisfied) 

 

 

3. If there is anything unsatisfactory about the lighting and its control, please describe. 

Responses could include: too much light, too little light, glare from sun, computer monitor visibility, 

heat from sun, or frequency of lights shutting on/off. 

 

 

 

4. How often do you use a task light? 

□ never 
□ a small amount in the winter months 
□ a few hours a week most of the year 
□ most of the time all year 

 
5. How often do you or someone else adjust the blinds / shades on the windows nearest to your work 

space? 

□ daily 
□ every few days 
□ every few weeks 
□ every few months 
□ practically never 
□ don't know 
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APPENDIX B. 

SITE INFORMATION COLLECTION CHECKLIST 

 

Site Name: _______________________________ Date:________ 

Address: _______________________________ 

 _______________________________ 

 _______________________________ 

Site contact: _______________________________ 

Contact Phone #: _______________________________ 

 

Equipment Checklist 

 Ladder 

 Illuminance Meter 

 Phone with compass, watch 

 Pens, Pencils 

 Writing Pads 

 Graph Paper 

 Reflectometer 

 Letter of Introduction 

 Tape measure 

 Digital Camera 

 Flashlight 

 Laptop 

 Screwdriver set 

 

Questions for contact 

 Ask for building plans 

 Ask the first three questions on the interview questionnaire 

What year was the daylighting system first operational?  ___________ 

On a scale of 1-5, how effective is the daylighting control system at saving energy? (5 

being fully effective) 

What level of commissioning did the control system undergo? (1 being no Cx)  
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Space Information 

Candidate Space Name: ___________________________ 

Space Type, Location  

Perceived Photocontrol 

Performance (1-5)* 
 

Total Area (ft
2
)  

Control Zone Depth (ft)  

Photocontrolled Area (ft
2
)  

Ceiling Height (ft)  

Window Head Height (ft), 

WWR 
 

Window Tvis (%)  

Description of Blinds                                                              Tvis: 

Fixture/Ballast/Lamp Info  

Auto. Control Description Stepped / Dimmed / Multi-step 

Auto. Control Location BAS / Ceiling / Fixture / Window / _________ 

Location / access. elec. panel  

Man. Control Description  

Occupancy Schedule  

Reflectances  Floor:         Walls:         Ceiling:          Partitions:          

* 1 = no functionality, 5 = perfect functionality 

Photograph 

 Entire Room 

 Window details 

 Blinds 

 Light switches 

 Overhangs, light shelves, clerestories 

 Partitions 

 Light fixtures 

 Photosensor (model number) 

 Workplane
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Light sensor mounting: __________________ 

Sketch space: area, general fixture layout, general furniture layout, control zone depth; include: 

 Light fixtures and circuits, with sensor placement and orientation 

 Furniture and logger location 

 Shading devices (incl. blinds and ext. devices) 

 Wall and glazing 

 

Other Modeling inputs 

 Approx. window u-value ____ 

 Wall construction: 

 List exterior surfaces:  

 Number of occupants _____ 

 Number of computers _____ 

 Other equipment:  

 




